
Database Systems Journal vol. II, no. 4/2011 51

Solutions for the Object-Relational Databases Design

Manole VELICANU, Iuliana BOTHA
Academy of Economic Studies, Bucharest

mvelicanu@yahoo.com, iuliana.botha@ie.ase.ro

The need for databases occurs in the moment when takes place an informatics system development.
Moreover, databases are an important step in this process. For this reason, this paper deals with
object-relational databases implementation as part of informatics systems development. The practical
implementation is made on a decision support system (DSS) prototype, which can be applied in
the uncertain and unpredictable environments, like the production and the prediction of the
wind energy.

Keywords: Object-Relational Databases, Informatics Systems Development, Unified
Modeling Language (UML), Database Design, Database Implementation.

Introduction
The IT&C fast development in recent

decades is accompanied by significant
changes in economic informatics. For this
reason, the engagement of specialists is
aimed at creating user-oriented information
systems, which respond to requests
promptly and accurately. Thus, over time,
it was made the transition from
computerized systems that address
particular administrative problems, to
intelligent systems which assist the
decisions, based on knowledge modeling
and processing.
Currently, organizations are required to
store and process increasing quantities of
data, requiring recourse to modern
information technology, databases, data
warehouses, Internet and, more so in these
cases, the knowledge bases of intelligent
systems.
Developing object-oriented model was due
to inability of the relational model to

successfully deal with very large data
volumes, of great complexity, encountered
most often in new types of computer
applications (multimedia, Internet, XML,
spatial applications etc.). However,
although OODBMS (Object-Oriented
DBMS) appear to meet the needs for better
software required by the new economy,
markets for their use remains relatively
low, the reason most often cited being the
difficult query with a large consumption of
computational resources.
The advantages and especially the
limitations of both relational and object-
oriented technology, demonstrate that
businesses need the capabilities of both
data models. As a result of these emerging
technologies, it was developed the object-
relational data model. This model provides
an extension of the relational data model
while also support the main concepts of the
object-oriented one (Figure 1).

1

mailto:mvelicanu@yahoo.com
mailto:iuliana.botha@ie.ase.ro

52 Integrating XML Technology with Object-Relational Databases into Decision Support Systems

Figure 1 – Extensions of the relational model

(Source: Authors)

While in the 80s the relational databases
were crowned as the most widely accepted
databases, their limitations lead to a new
hybrid database generation, according to
the new data model specified above:
object-relational databases.
The current technology has created the
need for the use and storage of complex
object types that were not supported by
relational databases. Therefore, the new
generation of database systems supports a
unified relational and object-oriented data
model. The idea is to import, as extensions
of the relational model, the object-oriented
concepts such as scalability, complex data
types (large objects, multimedia data,
spatial data, user defined object types etc.)
and the fundamental object characteristics
like encapsulation, inheritance and
polymorphism [5].

2. Design of the object-relational
databases
The object-oriented methods used for the
design of the systems with object-relational
databases are based on the concepts of
object and classes of objects and allow the
use of three different models for designing
an object-relational database: the static
model by which are modeled objects and
the relations between them; the dynamic
model by which are described interactions
between objects; the functional model by

which are transformed data values using
operations and processes.
The advantages of applying object-oriented
methods in order to design the object-
relational databases can be derived
precisely from the facilities of unitary
model behavior and data, and capture for
the same object static, functional or
dynamic characteristics, in terms of
interactions with other objects. Thus can be
modeled the business needs in interaction
with objects.
In conclusion, we find that the benefits of
the object-oriented methods in comparison
with the structured one, recommend the
object-oriented approach in the case of
object-relational databases design.
Since object-oriented methodologies and
methods have some limitations as well as
many differences (in terms of symbols,
notations or types of diagrams), it was
needed a standard for modeling that can be
widely applied in creating new systems or
the maintenance of systems.
Thus, in 1997 was developed UML
language (Unified Modeling Language),
which brings standardization in the
representation of symbols, notations,
diagrams, and types of models which can
be used for modeling a system with object-
relational databases. In this way have been
removed differences between object-
oriented methodologies.

Database Systems Journal vol. II, no. 4/2011 53

The latest version of UML is 2.3, which
defines fifteen types of diagrams, divided
into three categories. Thus, eight of them
show static aspects, other three present
general behaviors, and four represent
different aspects of interaction between
system elements.

3. UML extensions. Proposing an UML
extension for object-relational databases
design.
Modeling object-relational databases with
object-oriented methods involves the usage
of the basic concepts of object-oriented
paradigm (classes, objects, encapsulation,
aggregation, inheritance, polymorphism,
abstraction) in implementing the static
(structural) and dynamic model.
As stated in [4] one of the main goals of
UML is to provide extensibility and
specialization mechanisms by which basic
concepts can be extended.
The standard set of UML notations and
diagrams can be adapted using the
following aspects:
- Conditions of use. Object-relational

databases are designed especially for
complex data storage (such as XML,
multimedia, spatial) and must be
optimized to achieve a variety of
queries on them;

- The data model used. Object-relational
databases implement the object-
relational data model, a hybrid model
that combines features of standard data
models (relational and object-oriented);

- Typical operations performed. Using
object-relational databases involves
operations with multimedia data,
spatial operations, and operations with
structured or unstructured XML data.

To cover all modeling situations, the
authors of UML [10], but also the OMG
organization [12] give the possibility to
extend syntax and semantics of UML

language through stereotypes, comments
and restrictions.
Defining a collection of stereotypes,
comments and restrictions, which extend
an existing diagram type, in order to
achieve a certain goal, is called a profile.
Together, the three mechanisms allow the
creation of UML extensions adapted to a
specific project. These mechanisms also
allow adaptation of UML language to new
information technologies, such as
advanced object-oriented programming
languages and their characteristics,
distributed technologies, multidimensional
analysis.
It is possible to add new items, to change
the existing specifications and even to
modify their semantics. Of course, it is
important that these extensions to be done
in a controlled manner, so that the UML
objective remains unchanged, namely
modeling information.
The study [3] presents a design
methodology for object-relational
databases. It defines new UML
stereotypes, specific for object-relational
databases and proposes a set of rules to
transform UML schema in an object-
relational one.
The papers [7] and [8] propose extending
the set of standard UML stereotypes and
restrictions by introducing a corresponding
set for multidimensional modeling. For
applications frequently used, like Web
applications, [9] proposes an UML
extension, and the studies [10] and [11]
examine some extensions used to model
relational databases.
Taking into account previous extensions
for database design, [3] explains standard
stereotypes of a relational database for
each level: conceptual, logical and physical
(Table 1).

54 Integrating XML Technology with Object-Relational Databases into Decision Support Systems

Table 1 - Stereotypes for relational databases design
(Source: adapted from [3])

Database level Database element UML element Stereotype

Database Component <<Database>>

Schema Package <<Schema>>

Persistent class Class <<Persistent>>

Multivalued attribute Attribute <<MA>>

Calculated attribute Attribute <<DA>>

Composite attribute Attribute <<CA>>

Conceptual level

Identifier Attribute <<ID>>

Table Class <<Table>>

Virtual table (view) Class <<View>>

Column Attribute <<Column>>

Primary key Attribute <<PK>>

Foreign key Attribute <<FK>>
Entity constraint
(NOT NULL) Attribute <<NOT NULL>>

Uniqueness constraint Attribute <<Unique>>

Domain constraint
(CHECK) Constraint <<Check>>

Trigger Constraint <<Trigger>>

Logical level

Stored procedure Class <<Stored Procedure>>

Tablespace Component <<Tablespace>>
Physical level

Index Class <<Index>>

As stated in [4], an UML extension must
contain a short description, the list and
description of stereotypes, the comments,
the constraints, and also a set of formatting
rules which are needed in order to specify
if the data model is consistent.
For each stereotype are defined properties,
semantics, comments and constraints.
Also, each stereotype is identified by
specific icons. To define these stereotypes
we propose the template detailed in Table
2.
In order to use UML as modeling standard
for object-relational databases, it should be
extended to be applied to the object-

relational data model. It would be possible
to represent special types such as
collections (ARRAY), nested tables,
references (REF).
We realized the UML extension using the
CASE product IBM Rational Software
Architect that offers the possibility to
define custom profiles, which allows
extending menus, stereotypes, comments
and other restrictions. We applied the
proposed extension to highlight the
features of the object-relational model in
the UML class diagram.

Database Systems Journal vol. II, no. 4/2011 55

Table 2 - UML extension for object-relational database design
(Source: Authors)

<<UDT>>
- Name: User defined type
- Base class: Class
- Description: The extension defines an object class (an user defined object type)

- Image:
- Constraints:

- It is used to define the data type of other elements
- Can encapsulate attributes and methods

- Values:
Unspecified

<<REF>>
- Name: Tip REF
- Base class: Attribute
- Description: The extension defines a relationship to another object type

- Image:
- Constraints:

It is used to refer an object type
- Values:

The pointed object type

<<ROW>>
- Name: Tip ROW
- Base class: Attribute
- Description: The extension defines a composite attribute

- Image:
- Constraints:

- It is used to refer a composite attribute type, with a given number of elements
- The elements of ROW type can have different data types
- The ROW type has no methods

- Values:
Name of each component and the corresponding data type

<<ARRAY>>
- Name: Tip ARRAY
- Base class: Attribute
- Description: The extension defines a collection data type

- Image:
- Constraints:

- It is used in order to refer a collection data type, with a finite number of indexed elements
- The elements of ARRAY type can have any data type, except the ARRAY type

- Values:
Number of elements of the collection and the corresponding data types

ARRAY

ROW

REF

UDT

56 Integrating XML Technology with Object-Relational Databases into Decision Support Systems

<<OID>>
- Name: OID
- Base class: Attribute
- Description: The extension defines an unique identifier for each object type

- Image:
- Constraints:

Unspecified
- Values:

Unspecified

<<LOBAttribute>>
- Name: LOBAttribute
- Base class: Attribute
- Description: The extension defines a multimedia attribute (image, video, audio)

- Image:
- Constraints:

Unspecified
- Values:

Unspecified
Derivation rule
Type: LOB
Multiplicity: 1

<<SpatialAttribute>>
- Name: SpatialAttribute
- Base class: Attribute
- Description: The extension defines a spatial (geographic) attribute of the object type

- Image:
- Constraints:

Unspecified
- Values:

Unspecified
Derivation rule
Type: Spatial
Multiplicity: 1

<<UDTAttribute>>
- Name: UDTAttribute
- Base class: Attribute
- Description: The extension defines an attribute with the user defined type

- Image:
- Constraints:

Unspecified
- Values:

Unspecified
Derivation rule
Type: UDT
Multiplicity: 1

aUDT

aLOB

aSP

OID

Database Systems Journal vol. II, no. 4/2011 57

<<Inheritance>>
- Name: Inheritance
- Base class: Association-Generalization
- Description: The extension defines a generalization relationship between object types
- Image: Unspecified
- Constraints:

Unspecified
- Values:

Unspecified

<<Validation rule>>
- Name: Validation rule
- Description: The extension defines the rules of membership of classes to object-relational data

model
- Image: Unspecified
- Constraints:

Unspecified
- Values:

Unspecified

<<Supertype>>
- Name: Supertype
- Base class: Class
- Description: The extension defines a supertype from an inheritance hierarchy

- Image:
- Constraints:

Unspecified
- Values:

Unspecified

<<Subtype>>
- Name: Subtype
- Base class: Class
- Description: The extension defines a subtype from an inheritance hierarchy

- Image:
- Constraints:

Unspecified
- Values:

Unspecified

The above table shows a general pattern
which can be used to indicate the
specifications concerning the
characteristics of object-relational model in
the UML diagram of classes. Using the
proposed extension, the classes diagram

will contain references and visual images
of elements for the presented data model,
such as object types, object identifiers,
special attributes, and inheritance
relationship.

SubT

SuperT

58 Integrating XML Technology with Object-Relational Databases into Decision Support Systems

4. Solution concerning the development
flow of the applications with object-
relational databases
Analyzing the top-down and bottom-up
strategies for implementing the informatics
systems, we conclude that, if using object-
relational databases, it is appropriate to
choose any of them based on the existing
system characteristics.
A top-down approach is appropriate and
desirable in a situation where there is not
implemented an informatics system or if
there are disparate applications which work
as a result of local developments made
over time, but their preservation is not
vital.
If, however, what is already required to be
kept in its current form and with current
solutions, the approach should be bottom-
up. This will try to integrate the existing
systems into a new one which will be
available throughout the organization.
After the identification and analysis of
system requirements and setting its
objectives we will decide whether to store
some components of the existing system or
replace them completely, by choosing an
appropriate approach for development.
We consider that it is appropriate to
achieve an unified and homogeneous
system using top-down development
strategy, considering that integrating
existing databases it is very possible that
they are not built using an object-
relational data model and they use
different DBMS.
Based on standard steps to be taken into
consideration in order to develop database
applications, we believe that the sequence
of activities must be that shown in Figure
2.

Figure 2 – Development flow of the
applications with object-relational

databases
(Source: Authors)

1) The first activity to be addressed is to
identify system requirements that define the
system objectives and future information
needs for all its users. Must determine how
to achieve the objectives and steps that are
necessary to go, so there is a rigorous
approach and the obtained system to work
properly and have flexibility. Also, we
need not to forget the study of law in the

Database Systems Journal vol. II, no. 4/2011 59

fields of activity and the work rules and
procedures established by the organization.
2) Business environment analysis involves
the identification of the environment in
which the business operates, the detailed
analysis of operational requirements, the
analysis of operating rules and procedures,
data analysis and communication flow
analysis within the organization and
outside it.
3) The system design involves actually
building the new system architecture,
database design and corresponding
applications design.
Database design is a very important step
because it is responsible for ensuring
consistency of data stored. A poor database
design can lead to compromise data
integrity, their redundancy and thus
reduced performance.

Paper [13] identifies and describes three
levels for designing object-relational
databases, as we propose in Figure 2:
- Conceptual level, refers to the

development of a model independently
of any consideration regarding the
appearance of data, as result of
database analysis and modeling;

- Logical level, refers to the development
of the object-relational data model, but
independent of the chosen type of
DBMS and other physical aspects of
the model;

- Physical level, refers to the effective
implementation of object-relational
database, including these aspects
related to ensure data security,
managed through a specific DBMS.

Figure 3 – Object-relational databases design

(Source: Authors)

Figure 3 shows the steps that are required
to be made in order to design an object-
relational database. In this respect, it is

necessary a process of mapping the model
obtained from UML class diagrams to a
standard object-relational model,

60 Integrating XML Technology with Object-Relational Databases into Decision Support Systems

independent of product, and then the
subsequent implementation in a DBMS.
Mapping of the object model specific to
UML language in an object-relational
model that can be implemented in a
database requires, according to [5], the
implementation of identity, fields, classes,
associations and relationships of
generalization, aggregation and
composition.
The identity problem is treated in [5],
where two approaches are specified on the
implementation of identity: based on the
existence and based on value. The same
paper also states aspects of data fields’
implementation.

According to [1], the transformation of an
UML class diagram at object-relational is
resumed to the mapping of logical
structure of data and their behavior. This is
not possible with traditional entity-
association model (E-A). Unlike the
relational model, the object types support
encapsulation and the definition of
methods can be explicitly associated with
defining the types of objects.
Corresponding to the three stages of
designing object-relational databases, [6]
identifies three levels of mapping, outlined
in Figure 3:

Figure 4 – Levels involved in object-relational mapping

(Source: adapted from [6])

Conceptual level of UML classes
(conceptual schema of the database) meets
the requirements of the system and focuses
on classes, associations, attributes, states,
operations. Can be identified different
types of associations between classes, such
as aggregation, composition, recursive
association, hierarchy, class association.
Object-relational level (logical schema of
the database) contains the elements
proposed by the standard SQL:2003, such
as: user-defined types, structured types,
references, ROW data types and data

collections. Definitions made at this level
do not allow persistent objects or data,
until are created the tables that will store
them.
Object-relational persistence level
(physical schema of the database) is
composed of tables, some of which are
created from the previously defined object
types. In addition to tables, this level also
contains other specific relational elements,
such as restrictions, data fields,
relationships between tables.

Database Systems Journal vol. II, no. 4/2011 61

In the practical experiment that we have
realized, we used mapping to make the
transition from the conceptual level, shown
in the UML diagram of classes, at the
object-relational one. Implementation is
made in Oracle DBMS, by defining object
types and data type constructors,
corresponding to the object-relational data
model. Later, we made the transition to the
level of persistence, by creating tables of
objects on the types defined in the previous
level.
The paper [2] proposes to use UML class
diagrams to design the conceptual schema
instead of entity-association model (E-A),
commonly used for relational databases.
Unlike E-A model, UML has the
advantage that it allows the entire system
design and makes easier the integration of
different views on the system. Design
phase is divided into two steps:
- Logical design, standard, independent

of any product;
- Specific design, which takes into

account a specific product (Oracle,
Informix etc.).

The logical design is particularly important
in designing object-relational databases,
because each product implements a distinct
object-relational model. Thus, we can
identify an object-relational specification,
independent of product, which can be
easily determined using the standard
SQL:2003.
In terms of graphical representation, based
on the stereotypes proposed to extend
UML, we can use a number of stereotypes
specific for the object-relational model and
also for the standard SQL:2003.
The specific design involves specifying the
SQL schema in the chosen product. In
terms of graphical representation, based on
stereotypes proposed to extend UML, we
can use a number of stereotypes specific
for the object-relational model
implemented in the selected product.
Next, from [3], we have indicated some
rules to be followed for successful
implementation of mapping between
specified schemas (Table 3).

Table 3 – Rules used for mapping within schemas
(Source: adapted from [3])

UML SQL:2003 Oracle 10g

Class Structured type Object type

Class extension Typed table Object table

Attribute Attribute Attribute

Multivalued attribute ARRAY VARRAY

Composite attribute ROW / Attribute with
structured type Attribute with object type

Calculated attribute Method / Trigger Method / Trigger

Association

1:1 association REF-REF REF-REF

1:n association REF-ARRAY REF-Nested table

n:n association ARRAY-ARRAY Nested table - Nested table

Aggregation ARRAY Nested table

Generalization Data type Child object type created with
UNDER clause

62 Integrating XML Technology with Object-Relational Databases into Decision Support Systems

In the practical application, we
experienced the changes for the three
levels of mapping presented. So we
transformed the UML classes in Oracle
object types and then their extensions in
object tables. Associations between UML
classes were identified as being of type
one-to-many (1:n), which led to the
inclusion of a REF type attribute in the
type of object that participates in
association with multiplicity n. Since some
UML classes presented generalization
relationships, we have achieved in Oracle
the implementation of the concept of
inheritance by defining subtypes (each
object belongs to a sub-class, is also part of
the super-class). We have made the
inheritance definition by specifying the
UNDER clause in the specifications of
each subtype, indicating in this way the
supertype.
The result of the design phase is
represented by the object-relational
database schema, used in the phase pre-
implementation.
4) After the design, follows the system
implementation phase, by which are
specified the main components (using the
components diagram) and their distribution
on existing physical resources (modeled
through the deployment diagram).
In this phase, is created the physical
schema of the object-relational database,
are written programs to define and
manipulate objects in an ORDBMS that
supports high-level programming
languages, standard or proprietary, and
also standardized declarative language
SQL. Also, is tested the system and are
made improvements in its operation.
Practical experimentation uses the design
concepts defined above, making the
changes necessary to transition from UML
modeling to object-relational data model,
and then to persistent objects in the
database. We have implemented the
concepts using the Oracle DBMS and the
object extension included in the procedural
language PL/SQL.

5) Testing the system enables its
adjustment so we can decide its proper
functioning regardless of the parameters
involved. Thus, implementation and testing
the system functionalities are phases that
complete the system development.
6) However, during system operation will
be made maintenance and further
development, based on additional requests
of the beneficiaries or based on changes in
the organization activities. In case of
failure, we can return to a previous activity
and produce a new version of the system.

5. Conclusions
The paper deals with implementation
issues concerning the object-relational
databases, as part of informatics systems
development.
Based on the literature and using the
features of the standard modeling language
UML, we have proposed an extension of it
for modeling an object-relational database.
The proposed template explains the
standard stereotypes that are specific for
the object-relational data model. For each
stereotype are indicated properties,
semantics, restrictions and comments.
Also, we have proposed a solution for the
development flow of the applications with
object-relational databases. Based on
standard steps to be taken into account in
the process of development of a database
application, we consider that the sequence
of activities must present specific features
for each level, as outlined in the paper.
We considered the design as the most
important activity by the fact that it is the
only one that incorporates features of the
object-relational data model. Thus, design
is the activity that we detail the most in the
paper, specifying a series of rules to be
followed for a successful transition from
standard design to the specific one.

Acknowledgment
This paper presents some results of the
research project PN II, TE Program, Code
332: “Informatics Solutions for decision
making support in the uncertain and

Database Systems Journal vol. II, no. 4/2011 63

unpredictable environments in order to
integrate them within a Grid network”,
financed within the framework of People
research program.

References
[1] M.Wang, Using UML for object-

relational database systems
development: A framework, Issues in
Information Systems, vol.9, no.2, 2008,
ISSN 1529-7314

[2] E.Marcos, B.Vela, J.M.Cavero,
P.Cáceres, R.Juan, Aggregation and
Composition in Object – Relational
Database Design, 2001

[3] E.Marcos, B.Vela, J.M.Cavero, A
Methodological Approach for Object-
Relational Database Design using
UML, Software and Systems Modeling
Journal, vol.2, no.1, 2003, pp.59–72,
ISSN 1619-1374

[4] A.Bâra, V.Diaconiţa, I.Lungu,
M.Velicanu, Improving Performance in
Integrated DSS with Object Oriented
Modeling, WSEAS Transactions on
Computers, no.4, vol.8, 2009, pp.599-
609, ISSN: 1109-2750

[5] C.Strîmbei, Utilitatea metodologiei
UML în proiectarea bazelor de date,
Informatica Economică Journal,
no.2(26)/2003, pp.56-62, ISSN 1453-
1305

[6] M.F.Golobisky, A.Vecchietti,
Fundamentals for the Automation of

Object-Relational Database Design,
IJCSI International Journal of
Computer Science Issues, vol.8, no.2,
2011, ISSN 1694-0814

[7] S.Luján-Mora, J.Trujillo, I.Y.Song,
Extending UML for Multidimensional
Modeling, vol. Proceedings of the 5th
International Conference on The
Unified Modeling Language, 2002,
pp.290-304, ISBN 3-540-44254-5

[8] S.Luján-Mora, J.Trujillo, I.Y.Song, A
UML profile for multidimensional
modeling in data warehouses, Journal
Data & Knowledge Engineering -
Special issue, vol.59, no.3, 2006,
pp.725-769, ISSN 0169-023X

[9] J.Conallen, Building Web Application
with UML, Addison-Wesley, 2000,
ISBN 0-201-61577-0

[10] G.Booch, J.Rumbaugh, I.Jacobson,
The Unified Modeling Language User
Guide, Addison Wesley, 1998, ISBN
0-201-57168-4

[11] E.J.Naiburg, R.A.Maksimchuk, UML
for Database Design, Addison-
Wesley, 2001, ISBN 0-201-72163-5

[12] OMG, Unified Modeling Language:
Infrastructure and Superstructure,
August 2007, http://www.uml.org/

[13] T.Connolly, C.Begg, Database
Systems. A Practical Approach to
Design, Implementation and
Management, 4th edition, Addison
Wesley, 2004, ISBN 0-321-210-255

Manole VELICANU is a Professor at the Economic Informatics
Department at the Faculty of Cybernetics, Statistics and Economic
Informatics from the Academy of Economic Studies of Bucharest. He has
graduated the Faculty of Economic Cybernetics in 1976, holds a PhD
diploma in Economics from 1994 and starting with 2002 he is a PhD
coordinator in the field of Economic Informatics. He is the author of 18
books in the domain of economic informatics, 64 published articles (among
which 2 articles ISI indexed), 55 scientific papers published in conferences

proceedings (among which 5 papers ISI indexed and 7 included in international databases)
and 36 scientific papers presented at conferences, but unpublished. He participated (as
director or as team member) in more than 40 research projects that have been financed from
national research programs. He is a member of INFOREC professional association, a CNCSIS
expert evaluator and a MCT expert evaluator for the program Cercetare de Excelenta - CEEX
(from 2006). From 2005 he is co-manager of the master program Databases for Business

64 Integrating XML Technology with Object-Relational Databases into Decision Support Systems

Support. His fields of interest include: Databases, Design of Economic Information Systems,
Database Management Systems, Artificial Intelligence, Programming languages.

Iuliana BOTHA is an Assistant Lecturer at the Economic Informatics
Department at the Faculty of Cybernetics, Statistics and Economic
Informatics from the Academy of Economic Studies of Bucharest. She has
graduated the Faculty of Cybernetics, Statistics and Economic Informatics in
2006 and the Databases for Business Support master program organized by
the Academy of Economic Studies of Bucharest in 2008. Currently, she is a
PhD student in the field of Economic Informatics at the Academy of

Economic Studies. She is co-author of 6 books, 13 published articles (3 articles ISI indexed
and the other 10 included in international databases), 16 scientific papers published in
conferences proceedings (among which 6 paper ISI indexed). She participated as team
member in 4 research projects that have been financed from national research programs. From
2007 she is the scientific secretary of the master program Databases for Business Support and
she is also a member of INFOREC professional association. Her scientific fields of interest
include: Databases, Database Management Systems, Design of Economic Information
Systems, Business Intelligence, e-Learning Technologies.

