
Database Systems Journal vol. VII, no. 4/2016 47

Graphical interface for eCall incidents

Claudiu Dan BARCA

The Romanian-American University, Bucharest

Using data on incidents eCall in traffic control center I have designed a graphical

interface between PSAP 112 and national traffic control center. The interface is modular,

each component is implemented as a separate module, of which architecture respects the

design pattern MVVM (Model View View-Model). This will get a timely response for traffic

management in the area and obtain traffic information in the area.

Keywords: eCall, graphical interface, traffic management, traveler information services, Model

View View-Model

Introduction

The single emergency service, call

112, was conducted in Europe. This is a

practical way to make the free

movement of European citizens to safer.

Important efforts have been made in

the European Union that, in case of

crash, 112 can be automatically dialed

from inside the car, In this context all

new cars should be equipped with the

automatic emergency call system eCall -

Emergency -eCall [1,2,3]

The instalation of the ECall based on

the service 112 in types of vehicles

which are to be manufactured after

March 31, 2018 should be promoted

to increase the degree of system

implementation. Regarding the types of

vehicles type-approved before 31

march 2018, the subsequent

installation of an Ecall system is

possible [4]

There are serious and very serious

accidents when people's lives depend

on alarm systems such as eCall [5,6,7].

The service is automatically activated

and calls the European emergency

number 112 by transmitting information

about the accident to dispatch 112 [8].

The eCall system allows the generation

of a 112 emergency call and sends a set

of data on the vehicle, where the

accident occurred, etc. [9]. The request

can be performed manually or

automatically [10,11]. When there is no

data necessary for solving the case, it

can appeal to a European database.

eCall is a European Commission project that

will carry out road safety through rapid

intervention specialized services in case of an

accident anywhere in the European Union.

ECall is an open system platform, will send

other useful information to beneficiaries

such as traffic management centers. These

are based on logging the incidents

submitted by eCall platform to inform

road users and other media

communications on the incident location to

avoid congestion and affected accidents

routes. In this context we designed a

graphical interface that allows data

exchange between PSAP 112 and the

national traffic management center.

2. Design interface

I used Composite Application Library [12]

to design the interface, which helps

architects and developers to develop

applications with Windows Presentation

Foundation (WPF). Composite WPF

applications consist of separate "tracks",

fully functional, which creates a single

unified user interface. Composite

Application Library accelerates composite

application development using design

patterns to help them.

Composite Application Library is designed

to address the demands from developers

and architects that create WPF client

applications and need to solve the following:

• Developing clients composed of

independent but cooperative modules.

• Separating development modules from a

1

48 Graphical interface for eCall incidents

framework for integration (shell

framework); In this way teams can

focus on developing specific modules

but not the entire architecture WPF

• Using an architectural framework for

embedded applications to produce

consistent and high quality results.

3. Interface description

The interface messaging application

eCall (Figure 1) is divided into three

distinct areas (called regions): the upper

- the toolbar (Type Toolbar /

commandbar) area, the center - contains

components the main interface

(Overview, message Board, Search) you

can select independent by changing tabs

(type Content Tab) and the right - the quick

access to important messages / urgent

(watchlist) and statistics (statistics), each of

these two are separately encapsulated in an

expandable list (Expander ViewList).

Interface Overview. The application starts

with reports on the status of all messages

(Message Status Report Chart) and the

intervals of the faults (Chart incidents

Report). The first graph shows the number

of messages recieved (incoming), completed

(finalized) or ongoing / settlement

(pending). The second graph shows the

number of incidents per time of day, to

detect the most dangerous period (with the

highest risk level).

Fig. 1 – ECall interface messaging application (overview)

Component selection can be changed by

another component, such as Table

messages (Message Board) shown in

(Figure 2). In the right will always

appear the chart with statistics on the

current number of active incidents

(pending receipt or pending scroll /

settlement) and the list of important

messages that require supervision (Watch

list).

Fig. 2. Messages table

Database Systems Journal vol. VII, no. 4/2016 49

Within the Message Board component,

we find all messages sorted by lowest ID.

We can mark / unmark / delete / add a

message to our watch list (watch list) or

more, through their normal selection and

proper actuation. For example, if a

message has been selected and sent to the

watch list, will appear in the appropriate

box. Subsequently, if the message no

longer needs necessary supervision, it can

be deleted (even the table posts, but

obviously this is just an interface, there is

a deletion in the database).

Each message in the Messages table is

accompanied by a package MSD (Minimum

Set of Data) which can be viewed by the

action command View from desired

message. A window will open (Figure 3)

where we have information on date / time,

location, direction (GPS coordinates) and

last known locations. Also, within this

window we can locate the incident location

using an interactive map to locate the action

(Locate incident).

Fig. 3. View information MSD

Possible actions:

1. Change component

2. Cloning MesageBoard message to the

watchlist (Add To Watchlist)

3. Delete the message from the message

board or watchlist

4. Filter according to selectable options

5. Select / deselect messages

6. Select / deselect all messages

7. Mark / unmark (Flag / Unflag) posts

8. View MSD (per message)

9. Expand list in the right area

4. Interface components

The interface has a modular design,

where each component is implemented

as a separate module. These modules

are loaded at runtime (using the

advantages of .NET Framework) along

with the data model used to describe the

messages. The communication between

modules is achieved through a range of

services available to all modules

[12,13].

The application’s architecture respects the

design pattern MVVM (Model View View-

Model) which means that each module has

three separate levels: model-data (Data

Model - common to each mode), view-

model (View-Model - way a parse and

identify how data model specific to each

module), graphical view (View - way data is

represented graphically model for user

interaction).

The interface can identify six components

/ modules: General Overview, Message

Board, Search, Watch List, Statistics and the

Toolbar. The data model behind the visual

interface describes all the content of a

message eCall transmitted to the central

server (abstracts a message eCall) and

notifies any changes made to it (is an

observable data model - any change in the

model will synchronize and will reflect the

changes). Each module interprets this data

model differently, depending on its purpose

and function performed by the View model

(ex. the Statistics module uses only the

50 Graphical interface for eCall incidents

number of posts under three conditions

mentioned above).

Model data

The database is accessible through

service modules. These services inspect

public properties exposed by the model,

thus filling in the description field values.

The data, as I mentioned, is observable

and the interface notifies when changes

occur (data model implements

INotifyPropertyChanged interface

exposed in the .Net Framework). When

you start the application, the data

model is initiated with content. So we

will have a list of messages where

each message is defined by the data

fields present in the model. When we

interact with the data model we actually

interact directly with the content of the

messages. To change the content of a

message, we call all the properties

exposed by model. Once we have

achieved the desired change, the

property will notify this to the interface,

at which time it will reset the level of

View.

The data model has the following fields

(exposed via public property):

id: ID of the message is the registration

number in the database

- associated property: ID

 - Time: the time and date the

 message was recorded

- associated property: Time

 - Index: Index message Event

 index (derived from the

 database of incidents,

 selected by the operator)

- associated property: Index

 - incidentAddres: address on

 the scene

- associated Property:IncidentAddres

 -freeText: text space for notes,

 incident description

- associated property: FreeTex

 -status: status message -

 resolved, pending, ongoing

 allocation

- associated property: Status

 - flag: marking message

- associated property: Flag

 -MSDtime: time and date on

 which the incident occurred

- associated property: MSDTime

 -MSDlocation: address

 details about the incident,

 GPS positions

- associated property: MSDLocation

 -MSDdirection: directions

 to the place of incident

 (position before the crash-

 GPS coordinates)

- associated property: MSDDirection

 -MSDlastLocation:new

 locations (the last two, three

 GPS position) - associated

 property: MSDLastLocation

Components / Modules

- General Overview (Figure 4)

Fig. 4. Components / modules (overview)

Database Systems Journal vol. VII, no. 4/2016 51

This module exposes two graphs / reports

on the number of posts, under three

states (pending allocation under

finalization / settlement and completed)

and the number of incidents in a ll

intervals of a day (24h). These

calculations are performed only on

messages found in the table, so a r c h i

v e d messages will not be considered

(only local posts).

- Message Board

The message board (Figure 5) lists all the

messages that the user wants to view. Each

message is defined in the data model, the

fields are visible in the form of table heads.

Only the MSD (minimum set of data) is

visible separately when choosing to View the

selected message. At the bottom we have

two buttons - selection of all messages or

reset selection, and two filtering options -

after status (Incoming, Pending, Finalized) or

only marked messages (Flagged).

Fig. 5. Table messaging

When we select a message, or more, and

choose to add them to the watch list (Add

To Watch List), these will be added (as

cloned messages) in the appropriate box

(Watch List) located in the right region.

The message board can be monitored

throughout the entire activity as they are

notified in case of data content changes

(ex: change the message with ID 2’s status

from Finalized to Pending) and therefore the

behavior is observable in real time.

Thus, through this list, we can isolate high

priority messages and monitor them

separately. If we want to delete messages

from the list we just do it by pressing X,

colored in red (Figure 6)

Fig. 6. Watch List

- Statistics

Statistics module (Figure 7) shows the

number of messages that are in the

three states (completed, pending,

pending allocation) as a bar graph. This

graph is always visible in the right region

and is also notified when changing data

content (ex.: longer resolve an incident).

52 Graphical interface for eCall incidents

Fig. 7. Statistics module

- Toolbar

This module contains all commands that

can act on a message in Message Board

(Figure 8)

Fig. 8. Toolbar

- Add to WatchList

By selecting a message or several

messages and using this option,

we are copying those messages in

the watch list (right list, the

shortcut).

- Mark (Flag)

By selecting a message or several

messages from the board and using

this command, we will be able to

mark those messages through a red

warning sign.

- Unmark (Unflag)

Mark is the reverse order, removes

the selected messages’ warning sign.

- Delete

By selecting a message or several

messages making and using this

command, we will be deleting

messages. Erasure occurs only at

the interface level; messages

remain in the database and can be

part of the archive. Every command

is implemented independently, in

this way using a design-pattern

type Command, and command

action is a method call made by

the mediator - contains services

implemented at the application level

that can manipulate data content.

5. Interaction between modules

The interaction between modules is achieved

through a mediator containing a list of

services implemented at the application level

that can manipulate data content:

 Message XML Reader- Reads and parses

the data stream coming from the

database; stores into a collection data.

 Message Control Service, implements the

following functionality on data collection:

 Set Message Board Collection: this

functionality is achieved through a

connection (data binding) with the data

collection that contains instances of the

data model complemented with

information obtained from flow database.

 Add To WatchList : this functionality

assignes a message to the watchlist,

 Flag/Unflag Message: This

functionality is assigned to the

command Flag / Unfla - in toolbar

 Delete From Message Board: this

functionality is assigned to the Delete

command - the command bar

 Delete From Watch List: this

functionality is assigned to the

command "X" associated with an

element of watch list

 StatisticsService: Based on the collected

Database Systems Journal vol. VII, no. 4/2016 53

data, the statistical/analytical

computation is needed to build the

graphs of the two components,

Overview and Statistics. This service

has methods (visible from outside

mediator) to call the calculation of

statistics on new data and get those

calculations to build graphs.

6. Conclusions

ECall application messaging interface

allows quick access to important messages

/ emergency type eCall and statistics.

The data model used in the design of the

interface shows all the content of a

message sent by the eCall PSAP 112 and

notify any change is made on sa. In

conclusion, we get useful data in real

time on the incident eCall

References

[1] Safety Forum- The eCall Project-

eCall Expert Meeting Helsinki April

2005

[2] MEMO/13/547- European

Commission- Brussels, 13 June 2013

[3] Dietmar Zlabinger- Questionnaire

eCall/eCall-Flag-.

Mobilregulierungsdialog 2012-03-23

[4] George Căruțașu, Cezar Botezatu,

Mihai Botezatu, Expanding eCall

from cars to other means of transport,

Journal of Information Systems &

Operations Management, Vol. 10 No.2

/ December, pag. 354-363

[5] Tomasz Kaminski, Monika Ucinska,

Ewa Kamiska- Effect analysis on the

implementation of automatic emergency

call system eCall- Journal of KONES

Powertrain and Transport, Vol. 18,No. 4

2011

[6] Pierpaolo Tona- EU-wide interoperable

harmonised eCall- EU Emergency

Services Workshop 2012 Riga

19/04/2012

[7] Jerome Paris- eCall deployment in

Europe- HeERO International

Conference 15th November 2012

Zagreb

[8] Botezatu Cezar, Bârcă Claudiu.

Intelligent vehicle safety systems-eCall,

Journal of Information Systems &

Operations Management No. 2,

December 2008, pag. 487-494, ISSN

1843-4711

[9] Bârcă Claudiu Dan, Rareș Ropot,

Sorin Dumitrescu –eCall Minimum Set

Of Data (MSD)- Journal of Information

Systems & Operations Management,

2009, vol. 3, issue 2, pages 428-439

[10] Marco Annoni -eCall Deployment-

HeERO International Conference 15th

November 2012 Zagreb

[1 1] Emilio Davila -European

Commission DG Information Society.

Unit ICT for Transport-Status of the

eCall initiative- 6th EeIP Meeting

Brussels, 24/3/11

[12] Microsoft Developer Network,

[13] Microsoft.Net Framework 3.5

Service Pack 1

Claudiu Dan BÂRCA graduated from Faculty of Computer Science for

Business Management, Romanian American University in 2007, and holds a

master degree in Economic Informatics since 2008 and a PhD in the field of

Engineering Sciences since 2013. He is an assistant lecturer within the

Faculty of Computer Science for Business Management having nine years of

teaching experience. He also has good research and publishing activity: he was

 a member of the research teams of international and national projects. His

 core competences are in software programming and connected areas.

