Database Systems Journal vol. 11, no. 2/2011

55

Natural versus Surrogate Keys. Performance and Usability

Dragos-Paul POP
Academy of Economic Studies, Bucharest, ROMANIA
dragos paul pop@yahoo.com

Choosing the primary key for a table proves to be one of the most important steps in database
design. But what happens when we have to pick between a natural or a surrogate key? Is
there any performance issue that we must have in mind? Does the literature have a preferred
pick? Is usability a concern? We’ll have a look at the advantages and disadvantages of both
natural and surrogate keys and the performance and usability issues they address.

Keywords: primary keys, natural keys, surrogate keys, superkey, candidate key, unique key,

performance, usability.

1 Introduction

Choosing a primary key is really
important because it affects the database
at the performance and usability levels.
The literature speaks of both natural and
surrogate keys and gives reasons for
choosing one over the other.

Before we get to talk about natural and
surrogate keys in a relational
transactional table, we must define a few
other key concepts used in the relational
database = model architecture. The
concepts to be defined are the superkey,
the candidate key, the unique key and the
primary key.

2 Key concepts

The superkey is defined as being a set of
attributes of a given table that verifies
one main condition. The condition in
question is that there are no two distinct
tuples in that table with an identical value
for the superkey set. Also, the attributes
comprising the superkey set are said to be
functionally dependent. This makes true
the following statement: if S is a
superkey for the relation R, than the
cardinality of the projection of R over S
is the same as the cardinality of R. After
a table has gone through normalization,
we can say that all its attributes form a
superkey, because there are no two tuples
that are identical for all the values of the
set.

From the superkey concept, we can
define the candidate key. This is

sometimes called a minimal superkey,
because a candidate key is, in fact, a
minimal set of attributes necessary to
uniquely identify a tuple. In other words, a
set of attributes is said to be a candidate key
if there are no two tuples with the same
value for the key and there is no other subset
of these attributes that can form a candidate
key. This is where the “minimal” property of
the candidate key derives from. A table can
have multiple candidate keys.

Another concept related to the superkey is
the unique key. Again, just like a superkey
and a candidate key, the unique key can
uniquely identify each row in a table.
Although this is not a rule, unique keys tend
to only comprise a single column. The
difference between candidate keys and
unique keys is that, in practice, unique keys
do not enforce the NOT NULL constraint.
This means they can contain the NULL
value and still uniquely identify table rows.
Why? Because of the way NULL is treated
by the database management systems.
NULL is not a value, but the absence of a
value, so the unique key concept holds true
even for rows with NULL for the unique
key. This is because identification of two
equal keys is done based on their values, and
since NULL is not a value, two keys
containing NULL are not considered to be
equal. This is by no means to be taken as a
rule, because it differs in implementation
across database management systems. A
better definition of a unique key is that two

56

Natural Versus Surrogate Keys. Performance and Usability

tuples cannot have the same value for the
unique key if NULL values are not used.
So, a unique key only uniquely identifies
rows that contain a value other than
NULL for the key. As for the candidate
key, a table can have multiple unique
keys.

The primary key is probably the most
important concept in database design. A
primary key is, basically, one of the
candidate keys in a table. It is a unique
key that does not contain (and never will)
NULL values can also be made a primary
key. For some tables, even a superkey
can be a primary key (but that is a little
odd). So how and why is a primary key
different form all the others? A table can
only have one primary key and this key is
the preferred way of identifying
individual tuples.

3 Natural and surrogate keys

Choosing the primary key has proven to
be the difficult part in database design.
This is because there are two types of
primary keys: natural and surrogate.

The natural key, also called a domain key
or an intelligent key, is a candidate key
that is logically related to the table. That
is, it has business meaning, or business
value. It is something that can be found in
nature, it makes sense.

A natural key is a single column or set of
columns that uniquely identifies a single
record in a table, where the key columns
are made up of real data. When I say
“real data” I mean data that has meaning
and occurs naturally in the world of data.
A natural key is a column value that has a
relationship with the rest of the column
values in a given data record. Here are
some examples of natural keys values:
Social Security Number, ISBN, and
TaxId.

On the other hand, the surrogate key is
not derived from real data; it does not
have any business meaning or logic. It is
a key most often generated by the
database or made up using an algorithm.
A surrogate key like a natural key is a
column that uniquely identifies a single

record in a table. But this is where the
similarity stops. They are keys that don’t
have a natural relationship with the rest of
the columns in a table. The surrogate key is
just a value that is generated and then stored
with the rest of the columns in a record. The
key value is typically generated at run time
right before the record is inserted into a
table. It is sometimes also referred to as a
dumb key, because there is no meaning
associated with the value. Surrogate keys
are commonly a numeric number.
An important distinction between a
surrogate and a primary key depends on
whether the database is a current database or
a temporal database. Since a current
database stores only currently valid data,
there 1is a one-to-one correspondence
between a surrogate in the modeled world
and the primary key of some object in the
database. In this case the surrogate may be
used as a primary key, resulting in the term
surrogate key. In a temporal database,
however, there is a many-to-one relationship
between primary keys and the surrogate.
Since there may be several objects in the
database corresponding to a single surrogate,
we cannot use the surrogate as a primary
key; another attribute is required, in addition
to the surrogate, to uniquely identify each
object.
Authors have argued that a surrogate should
have the following characteristics:
e the value is unique system-wide,
hence never reused
e the value is system generated
e the value is not modifiable by the user
or application
e the value contains no semantic
meaning
e the value is not visible to the user or
application
e the value is not composed of several
values from different domains
In practice, the surrogate key is frequently a
number generated by the database
management system. For example, Oracle
uses sequences to accomplish this task,
while SQL server gives the “identity

Database Systems Journal vol. 11, no. 2/2011

57

column” option. PostgreSQL users have
the “serial” option, and MySQL ones use
an auto_increment attribute. Having the
key independent of all other columns
insulates the database relationships from
changes in data values or database design
(making the database more agile) and
guarantees uniqueness.

4 Surrogate Key Implementation
Strategies

There are several common options for
implementing surrogate keys:

Key values assigned by the
database. Most of the leading
database vendors — companies
such as Oracle, Microsoft and IBM
— implement a surrogate key
strategy called incremental keys.
The basic idea is that they maintain
a counter within the database
server, writing the current value to
a hidden system table to maintain
consistency, which they use to
assign a value to newly created
table rows. Every time a row is
created the counter is incremented
and that value is assigned as the
key value for that row. The
implementation strategies vary
from vendor to vendor, sometimes
the values assigned are unique
across all tables whereas
sometimes values are unique only
within a single table, but the
general concept is the same.

MAX() + 1. A common strategy is
to use an integer column, start the
value for the first record at 1, then
for a new row set the value to the
maximum value in this column plus
one using the SQL MAX function.
Although this approach is simple it
suffers from performance problems
with large tables and only
guarantees a unique key value
within the table.

Universally unique identifiers
(UUIDs). UUIDs are 128-bit values

that are created from a hash of the ID
of vyour Ethernet card, or an
equivalent software representation,
and the current datetime of your
computer system. The algorithm for
doing this is defined by the Open
Software Foundation
(www.opengroup.org).

Globally unique identifiers (GUIDs).
GUIDs are a Microsoft standard that
extend UUIDs, following the same
strategy if an Ethernet card exists and
if not then they hash a software ID
and the current datetime to produce a
value that is guaranteed unique to the
machine that creates it.

High-low strategy. The basic idea is
that your key value, often called a
persistent object identifier (POID) or
simply an object identified (OID), is in
two logical parts: A unique HIGH value
that you obtain from a defined source
and an N-digit LOW value that your
application assigns itself. Each time
that a HIGH value is obtained the LOW
value will be set to zero. For example,
if the application that you’re running
requests a value for HIGH it will be
assigned the value 1701. Assuming
that N, the number of digits for LOW,
is four then all persistent object
identifiers that the application assigns
to objects will be combination of
17010000,17010001, 17010002, and
so on until 17019999. At this point a
new value for HIGH is obtained, LOW
is reset to zero, and you continue
again. If another application requests
a value for HIGH immediately after
you it will be given the value of 1702,
and the OIDs that will be assigned to
objects that it creates will be
17020000, 17020001, and so on. As
you can see, as long as HIGH is unique
then all POID values will be unique.

The fundamental issue is that keys are a
significant source of coupling within a

58

Natural Versus Surrogate Keys. Performance and Usability

relational schema, and as a result they
prove difficult to refactor. The
implication is that you want to avoid keys
with business meaning because business
meaning changes. However, at the same
time you need to remember that some
data is commonly accessed by unique
identifiers, for example customer via
their customer number and American
employees via their Social Security
Number (SSN). In these cases you may
want to use the natural key instead of a
surrogate key such as a UUID or
POID. [3]

5 Tips for Effective Keys

How can you be effective at assigning
keys? Consider the following tips, by
Scott W. Ambler [3]:

e Avoid “smart” keys. A “smart” key
is one that contains one or more
subparts which provide meaning.
For example the first two digits of
an U.S. zip code indicate the state
that the zip code is in. The first
problem with smart keys is that
have business meaning. The
second problem is that their use
often becomes convoluted over
time. For example some large
states have several codes,
California has zip codes beginning
with 90 and 91, making queries
based on state codes more
complex. Third, they often
increase the chance that the
strategy will need to be expanded.
Considering that zip codes are nine
digits in length (the following four
digits are used at the discretion of
owners of buildings uniquely
identified by zip codes) it’s far less
likely that you’d run out of nine-
digit numbers before running out
of two digit codes assigned to
individual states.

e Consider assigning natural keys for
simple “look up” tables. A “look
up” table is one that is used to

relate codes to detailed information.
For example, you might have a look up
table listing color codes to the names
of colors. For example the code 127
represents “Tulip Yellow”. Simple look
up tables typically consist of a code
column and a description/name
column whereas complex look up
tables consist of a code column and
several informational columns.

Natural keys don’t always work for
“look up” tables. Another example of
a look up table is one that contains a
row for each state, province, or
territory in North America. For
example there would be a row for
California, a US state, and for Ontario,
a Canadian province. The primary
goal of this table is to provide an
official list of these geographical
entities, a list that is reasonably static
over time (the last change to it would
have been in the late 1990s when the
Northwest Territories, a territory of
Canada, was split into Nunavut and
Northwest Territories). A valid natural
key for this table would be the state
code, a unique two character code —
e.g. CA for California and ON for
Ontario. Unfortunately this approach
doesn’t work because Canadian
government decided to keep the same
state code, NW, for the two
territories.

Your applications must still support
“natural key searches”. If you choose
to take a surrogate key approach to
your database design you mustn’t
forget that your applications must still
support searches on the domain
columns that still uniquely identify
rows. For example, your Customer
table may have a Customer_POID
column used as a surrogate key as well
as a Customer_Number column and a
Social_Security_Number column. You
would likely need to support searches

Database Systems Journal vol. 11, no. 2/2011

59

based on both the customer
number and the social security
number. Searching is discussed in
detail in Best Practices for
Retrieving Objects from a
Relational Database.

e Don't naturalize surrogate keys. As
soon as you display the value of a
surrogate key to your end users, or
worse yet allow them to work with
the value (perhaps to search), you
have effectively given the key
business meaning. This in effect
naturalizes the key and thereby
negates some of the advantages of
surrogate keys. [3]

6 Advantages and disadvantages

Of course, there are a lot of advantages
and disadvantages of using natural or
surrogate keys. Authors are divided
between the two strategies. Below there
is a listing of pros and cons of using both
natural and surrogate keys, as Gregory A.
Larsen list them:

6.1 Surrogate Key Pros and Cons

A definite design and programming
aspect of working with databases is built
on the concept that all keys will be
supported by the use surrogate keys. To
understand these programming aspects
better, review these pros and cons of
using surrogate keys. [4]

Pros:

e The primary key has no business
intelligence built into it. Meaning
you cannot derive any meaning, or
relationship between the surrogate
key and the rest of the data
columns in a row.

e If your business rules change,
which would require you to update
your natural key this can be done
easily without causing a cascade
effect across all foreign key
relationships. By using a surrogate
key instead of a natural key the
surrogate key is used in all foreign

key relationships. Surrogate keys will
not be updated over time.

Surrogate keys are typically integers,
which only require 4 bytes to store, so
the primary key index structure will be
smaller in size than their natural key
counter parts. Having a small index
structure means better performance
for JOIN operations.

It’s easy to create a naming system for
surrogate keys, so that remembering
the primary key of a table can be
made a lot easier. [4]

Cons:

If foreign key tables use surrogate
keys then you will be required to have
a join to retrieve the real foreign key
value. Whereas if the foreign key
table used a natural key then the
natural key would be already be
included in your table and no join
would be required. Of course this |
only true if you only needed the
natural key column returned in your
query

Surrogate keys are typically not useful
when searching for data since they
have no meaning.

Surrogate keys have no knowledge
level value. The most important
function of the PK is as an interaction
element between the real-world and
the database. It is thorough the
primary key that we usually query the
database. The primary key is of
fundamental importance if we are to
"usefully" relate the concepts of the
database to the real world. [4]

6.2 Natural Key Pros and Cons
Having natural keys as indexes on your

tables

mean you will have different

programming considerations when building

your applications.

You will find that pros

and cons for natural keys to be just the
opposite as the pros and cons for surrogate
keys. [4]

Pros:

60

Natural Versus Surrogate Keys. Performance and Usability

e They already exist in the schema.
There is no need for additional
columns that would load the
tables.

e Will require less joins when you
only need to return the key value
of a foreign key table.This is
because the natural key will
already be imbedded in your table.

e Easier to search because natural
keys have meaning and will be
stored in your table. Without the
natural key in your table, a search
for records based on a natural key
would require a join to the foreign
key table to get the natural key. [4]

Cons:

e Requires much more work to
change a natural key, especially
when foreign relationship have
been built off the natural key.

e Your primary key index will be
larger because natural keys are
typically larger in size then
surrogate keys.

e Since natural keys are typically
larger in size then surrogate keys
and are strings instead of integers
joins between two tables on a
natural key will take more time.

e Kind of hard to remember the
name of the key for every table in
the database [4]

7 Performance issue

The next scenario is built to test the
performance of natural and surrogate
keys. We will see when and if one is
better than the other.

The test business logic is simple and it is
about the commercial activity of a
company that sells goods. The test
entities are described as follows:

Customers

Products Orders

U

Fig 10. Database logical entities
After undergoing normalization, we get the
following database structure:
e Customers
0 This table will hold all the
information related to the
customers, such as first and last
names, email address, telephone
number, address and so on
e Products
0 Here we will have details about the
products that are being sold: name,
price, stock etc.
e (Categories
0 This table stores information about
different categories of products
e Orders
O This is the main table that holds
information about customer orders,
such as order date, serial number,
total value
e OrderDetalis
O The last table is used to store
information about individual lines in
a customer order: product, quantity,
price at buying time
There are two test cases: one in which we
will chose a natural key for the primary key
of every table and one in which a surrogate
key will be used. The tables will be loaded
with data and will be tested to see the
response times of simple selects and joins.
The test database management systems is
Oracle 10g Express Edition. The test
computer is equipped with an Intel Core 15
750 processor, 4 GB of RAM and two 500

Database Systems Journal vol. 11, no. 2/2011

61

GB hard-disks at 7200 rpm connected in
RAID level 0.

The test scenario uses the following table
descriptions:

PRODUCTS
P " NAME WVARCHARZ (30 BYTE)
P " MAKER WARCHARZ (20 BYTE)
PRICE NUMBER (7.2}
BTOCK NUMEBER {5}

F CATEGORY_NAME VARCHARZ (20 BYTE)

¢ IX_5YS_C007352
& SYS_C007352

CATEGORIES
P " NAME VARCHARZ (20 BYTE)
DESCRIPTION CLCE

§ 1X_SY5_00073s1
G 5YS_CO07351

CUSTOMERS

FIRST_MAME VARCHARZ (20 BYTE)
LAST_NAME WARCHARZ (20 BYTE)
P " EMAIL VARCHARZ (20 BYTE)
TELEFHONE ~ NUMBER (10)
ADDRESS WVARCHARZ (100 BYTE])

§ 1X_SY5_0007350
& 5YS_C007350

ORDERS

P " SERIAL_NUMEBER NUMBER (3)

F CUSTOMER_EMAIL WARCHARZ (20 BYTE])
DATETIME DATE
TOTAL NUMEER {10,2)

@ |X_SYS_C007354
Ge 5YS_C007354

ORDERDETAILS
PF" ORDER_SERIAL_NUMBER NUMEER (5)
PF" PRODUCT_MAME WVARCHARZ (30 BYTE)
PF" PRODUCT_MAKER WVARCHARZ (20 BYTE)
SALE_PRICE NUMBER (6.2}
QUANTITY NUMEER (3)

& |X_SYS_C00735E
G 5YS_C007356

Fig. 11. Natural keys database

62 Natural Versus Surrogate Keys. Performance and Usability
P "D HUKMEER
NAME VARCHARZ (30 BYTE) Sic‘)gﬁgt’s‘zfrggtgggﬁggsz’ 18 ms
MAKER VARCHARZ (20 BYTE) orders2, érderdetailsz’
PRICE HUMBER (7,2} where customers2.id =
STOCK NUMBER (5) orders2.customer_id and

F CATEGORY_ID NUMEER

4 1X_EY¥5_COOT3E
= SYS_C007361

CATEGORIESZ

F "D MUMBER
MAME WARCHARZ (20 BYTE)
DESCRIPTION CLOEB

@ 1X_5¥5_CO0T360
B SYS_CO07360

CUSTOMERSZ

P "D MUMBER
FIRST_WAME WARCHARZ (20 BYTE)
LAST_NAME WARCHARZ (20 BYTE)

EMAIL WARCHARZ (20 BYTE)
TELEFPHONE MURMEER (10}
ADDRESS WARCHARZ (100 BYTE)

4 1X_5¥5_C0D73s5a
= S¥S_CO07350

ORDERSZ2
P "D MUMBER
SERIAL_NUMBER MUMEER (5}
F CUSTOMER_ID MUMBER
DATETIME DATE
TOTAL MURMEBER (10.2)

$ 1X_S¥S_C007383
= SY¥S_CO07383

ORDERDETAILSZ
F "I MUMBER
F ORDER_ID MUMBER

F PRODUCT_ID NUMBER
SALE_PRICE MUMBER (8,2}
QUANTITY HNUKMBER (3}

@ IX_SYS_C007385
= SYS_C007365

Fig. 12. Surrogate keys database

Table 1. Query results

products2._category_id =
categories2.id and
orders2.id =
orderdetails2.order_id and
orderdetails2._product_id =
products?2.id

select * from customers, 20 ms
products, categories,
orders, orderdetails where
customers.email =
orders.customer_email

and products.category_name
= categories.name and
orders.serial_number =
orderdetails.order_serial_n
umber and
orderdetails._product_maker
= products.maker and
orderdetails_product_name =
products.name

select * from orderdetails2 |5 g

select * from orders2 15 ms
select * from categories2 15 ms
select * from products?2 18 ms
select * from customers2 14 ms
select * from orderdetails 17 ms
select * from orders 18 ms
select * from categories 28 ms
select * from products 18 ms
select * from customers 15 ms

8 Conclusions

As we can see from the results above,
choosing surrogate keys as primary keys
does not always mean adding columns to
tables. Also, query times are improved,
because primary indexes are smaller. This is
due to the fact that surrogate keys use an
integer data type, while the natural keys they
replaced used a variable length character
data type.

In the end, although surrogate keys tend to
be better for performance, people still use
natural keys just because they feel better.
Generally, database designers are inclined to
use surrogate keys, because making things
abstract is their main issue, while application
developers go with natural keys, because
they have more business logic.

Database Systems Journal vol. 11, no. 2/2011

63

9

Acknowledgements

This work was cofinaced from the
European Social Fund through Sectoral
Operational Programme Human
Resources ~ Development — 2007-2013,
project number POSDRU/107/1.5/S/77213
,Ph.D. for a career in interdisciplinary

economic research at the European

standards”.

References

[1] Breck Carter, “Intelligent Versus
Surrogate Keys”. Internet:

http://www.bcarter.com/intsurrl.ht
m, October 6, 1997 [Mar 18, 2011]
[2] Michelle A. Poolet, “SQL by Design:
How to Choose a Primary Key”.
Internet:
http://www.sglmag.com/article/syst
ems-administrator/sql-by-design-
how-to-choose-a-primary-key, April

3]

[4]

[5]

6]

01, 1999 [March 18, 2011]

Scott W. Ambler, “Choosing a
Primary Key: Natural or Surrogate?”.
Internet:
http://www.agiledata.org/essays/ke
ys.html, 2005 [Mar 18, 2011]
Gregory A. Larsen, “SQL Server:
Natural Key Verses Surrogate Key”.
Internet:
http://www.databasejournal.com/featu
res/mssql/article.php/3922066/SQL-Ser
ver-Natural-Key-Verses-Surrogate-
Key.htm, January 31, 2011 [Mar 18,

2011]
Michelle A. Poolet, “Surrogate Key vs.
Natural Key”. Internet:

http://www.sglmag.com/article/data-
modeling/surrogate-key-vs-natural-
key/2, lJanuary 24, 2002 [Mar 18,
2011]

Dragos-Paul POP graduated from the Faculty of Computer Science for
Business Management at the Romanian-American University of Bucharest in
2007 (Bachelor’s degree) and in 2009 (Master’'s degree), specialising in
Economic IT. He is curently a Ph.D. candidate at the Academy of Economic
Studie in Bucharest. He works as an assistant teacher at the Romanian-American University

in Bucahrest, teaching computer

architecture,

operating systems, advanced web

programming and databases. His main domains of interest are web technologies, database
technologies, programming languages, networking, hardware and operating system

http://www.databasejournal.com/features/mssql/article.php/3922066/SQL-Ser
http://www.databasejournal.com/features/mssql/article.php/3922066/SQL-Ser

