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This study explores and compares the performance of tree-based machine learning 

algorithms' predictions for Bucharest real estate market prices. The dataset was obtained 

from a local platform in March 2025 and contains residential apartments for sale in 

Bucharest. The comprehensive data preprocessing step, including imputation of missing 

values, encoding of categorical variables, and the engineering of new key features such as 

distance to public transport, played a key role in the models’ performance. The models were 

optimized using a grid search algorithm with 5-fold cross-validation and evaluated with key 

performance indicators including root mean squared error, mean absolute error, and 

coefficient of determination. The results indicate that XGBoost outperforms both Random 

Forest and a single Decision Tree, reducing all the key performance indicators used in 

analysis. 
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Introduction 

 

The housing real estate market in 

Bucharest underwent a drastic 

transformation over time due to rapid 

urbanization, demographic changes, and 

shifting economic conditions. Homebuyers 

and investors require an effective price 

forecast based on newer techniques to 

provide a robust house market analysis. 

The performance of tree-based machine 

learning techniques, decision tree, random 

forest, and XGBoost, on this particular 

economic segment of Bucharest is 

presented in this paper. One Decision Tree 

provides simple interpretability but will 

probably overfit; Random Forests increase 

stability by averaging a large number of 

trees; and XGBoost continues to improve 

predictions using gradient boosting that 

adjusts residual errors iteratively. Despite 

the optimistic results presented by these 

approaches in different global markets, 

their comparative performance in the 

specific context of Bucharest is yet to be 

explored. The current research fills this gap 

by benchmarking the performance of 

Decision Tree, Random Forest, and 

XGBoost regressors against an elaborate 

dataset of real estate transactions in 

Bucharest, collected in March 2025 from a 

regional online marketplace. After an 

extensive preprocessing step including 

imputation of the missing values, outliers 

handling, and feature engineering, the 

algorithms are fine-tuned using the grid 

search method. The grid search is carried 

out using a 5-fold cross-validation 

mechanism with the best model determined 

as the minimizer of the mean squared error 

metric. The optimised versions of the three 

algorithms are next benchmarked against 

the key indicators relevant to regression 

analysis: root mean squared error (RMSE), 

mean absolute error (MAE), mean absolute 

percentage error (MAPE), and the 

coefficient of determination (R2). Apart 

from precision, the approach also considers 

the drivers of the prices of properties, with 

model interpretability highlighted using the 

feature importance score. 

The structure of the paper is outlined as 

follows: Section 2 gives an overview of the 

literature relevant to the topic under 

investigation; Section 3 gives a 

comprehensive description of the 
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methodology used during this research; 

Section 4 presents the findings together 

with a related discussion; and Section 5 

recapitulates the major conclusions of this 

research and makes recommendations for 

future research. This framework ensures an 

empirically supported comparison of tree-

based models in the context of Bucharest's 

vibrant real estate market. 

 

2 Literature Review 

The rapid evolution of machine learning 

has opened new opportunities for modeling 

complex systems, including the real estate 

market, where price dynamics are difficult 

to capture. In the context of Bucharest’s 

urban housing landscape, machine-

learning-based price prediction promises to 

help buyers, investors, and policymakers 

navigate a market shaped by diverse offers 

and fluctuating demand. In the next 

paragraphs, studies related to this field are 

synthesized to highlight methodologies, 

key findings, and their implications for a 

Bucharest-focused investigation. 

 

2.1 Hedonic Foundations 

Before the beginning of modern machine 

learning, hedonic-price models provided a 

framework for decomposing sale prices 

into intrinsic and external attributes [1]. 

Early applications in Beijing and Paris 

confirmed the influence of building quality 

and neighborhood heterogeneity on prices 

[2, 3], and more recent work has extended 

hedonic indices to capture the effects of 

transit accessibility [4]. Although most 

hedonic studies focus on explanatory 

power rather than forecasting, they offer 

valuable guidance on feature selection and 

baseline model structure, insights that 

remain relevant when constructing 

machine-learning pipelines for Bucharest. 

 

2.2 Ensemble and Tree-Based Methods 

A recurring theme across multiple markets 

is the strong performance of tree-based 

ensemble models. For example, the authors 

of [5, 6, 7] show that Random Forest 

Regression achieves high accuracy when 

forecasting house prices in their case 

studies. Similarly, in Hong Kong, a 

Random Forest model outperformed both 

Support Vector Machines and Gradient 

Boosting Machines on a dataset of 40,000 

transactions spanning 18 years [8]. 

Extreme Gradient Boosting algorithm 

(XGBoost) also stands out: a Vilnius study 

that scraped nearly 19,000 listings found 

XGBoost to be the most predictive among 

fifteen tested models [9]. In Bengaluru, 

XGBoost again outperformed Linear, 

Ridge, Lasso and SVM baselines [10], and 

hybrid approaches (for example stacking 

with CatBoost) further reduced error on 1.9 

million transactions in Hong Kong [11]. 

Taken together, these ensemble successes 

suggest that machine-learning models for 

Bucharest will likely benefit from tree-

based learners, provided that sufficient 

feature engineering and hyperparameter 

tuning are applied. 

 

2.3 Linear and Kernel Methods 

Although less dominant than ensemble 

models, linear and kernel-based regressors 

remain valuable for their interpretability 

and computational efficiency. In the 

Bengaluru comparison, Ridge and Lasso 

regressions, as well as a support-vector 

machine, delivered reasonable accuracy 

but were ultimately outperformed by 

XGBoost [10]. In Melbourne, an SVM 

achieved the lowest mean squared error at 

the expense of the longest training time, 

underscoring a trade-off between 

predictive power and computational cost 

[12]. A Multiple linear regression with the 

right data split ratio is validated as being 

more efficient than simple linear regression 

for house market predictions [13]. In 

Beijing, after a rigorous data preprocessing 

step, which included outlier elimination, 

feature engineering, and one-hot encoding 

algorithm, Hybrid and Stacked 

Generalization Regression delivered 

promising results on the training set and 

test set [14].  

For Bucharest, where data volumes may 

vary significantly across districts, it may be 
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worthwhile to benchmark a well-tuned 

SVM alongside faster linear models as 

baseline approaches. 

 

2.4 Classification Formulations 

Some researchers have reframed house-

price forecasting as a binary classification 

task, predicting whether a property’s 

selling price will exceed its listing price. In 

Fairfax County, Virginia, the RIPPER rule-

learning algorithm yielded fewer 

classification errors than C4.5, Bayesian 

classifiers, and AdaBoost [15]. A related 

study applied SVM, Random Forest, and a 

neural network, finding that Random 

Forest delivered the highest accuracy, 

precision, sensitivity, and specificity [16]. 

While classification methods do not 

provide information on the magnitude of 

price changes, they may prove useful in 

Bucharest for stakeholders interested 

primarily in upside versus downside risk. 

 

2.5 Deep and Hybrid Architectures 

Deep-learning models, especially when 

enriched with a good data engineering step, 

have great potential but also require large 

datasets and careful regularization to avoid 

overfitting. One study combined street-

view imagery and socio-economic 

indicators with a gradient boosting 

machine to forecast neighborhood-scale 

appreciation rates with high accuracy [17]. 

Comparative work found that both deep 

networks and classical regression models 

tended to overestimate control-sample 

prices, indicating a need for larger datasets 

and ensemble hybrids [18]. The most 

advanced approaches leverage Transformer 

architectures optimized via Bayesian 

hyperparameter search, achieving 

substantial RMSE reductions on large 

Hong Kong datasets [11]. For Bucharest, 

integrating aerial or street-view data, if 

such data are available, could yield similar 

improvements, although attention must be 

paid to model complexity and 

generalization. 

 

 

2.6 Research Gaps and Outlook 

Despite the extensive literature, few 

studies have applied these advanced 

machine-learning techniques explicitly to 

the Bucharest housing market. Key 

knowledge gaps include the integration of 

geographic data with house attributes and 

the adaptation of machine learning models 

and deep-learning networks to conform to 

the data structure of Romania. By 

overcoming these limitations and 

integrating best practices across the 

different stages of preprocessing of the 

data, model development, and model 

evaluation, future studies can provide 

accurate and interpretable price forecasts 

customized to the specific urban context of 

Bucharest. 

 

3 Methodology 

The following chapter, summarized in 

Figure 1, presents the methodology steps in 

depth, starting with data acquisition and 

preprocessing, continuing with the 

architectures of the proposed models, and 

closing with the metrics used for 

comparison. 

 

 
Fig. 1 Methodology applied 
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3.1 Data Acquisition and Preprocessing 

Transactional data for the Romanian 

residential real estate market was obtained 

by web scraping a local listings website in 

March 2025. Initial preprocessing involved 

the removal of variables presenting over 

5% missing values. Discrete features with 

missing entries were imputed according to 

domain-specific rules: absent bathroom 

counts were assigned a value of 1, and 

missing balcony counts were set to 0. The 

year built field, with a low percentage of 

missing values, was median-imputed to 

maintain discreteness, while missing “built 

area” values were replaced by the median 

built area stratified by room count. 

Feature engineering produced several 

binary and continuous variables to enhance 

model performance. The categorical 

attributes housing_type, comfort, and 

compartmentalization_type were encoded 

as the binary indicators is_penthouse, 

is_luxury, and is_detached. Vertical 

position within the building was captured 

by the flags is_first_floor and is_last_floor, 

together with floor_ratio, defined as the 

apartment’s floor number divided by the 

total building floors. 

Spatial features were derived from latitude 

and longitude coordinates by computing 

distances (in meters) to the city center and 

the nearest metro station using the 

Haversine formula [19]:  

   

 

  

 
where  represents latitude,  represent 

longitude and R represents the radius of the 

Earth, which is 6371 km. [20] 

Interquartile filtering was applied to 

mitigate the influence of extreme outliers. 

For each variable of interest—sale price, 

usable area, built area, bathroom count, 

and floor count—the first (Q1) and third 

(Q3) quartiles were calculated, and the 

interquartile range (IQR = Q3 − Q1) was 

determined. Observations falling outside 

the interval [Q1 − 3·IQR, Q3 + 3·IQR] 

were removed, resulting in a homogeneous 

and robust dataset suitable for subsequent 

inferential and predictive modeling. 

 

3.2 Model Architectures 

This study presents a comparative analysis 

between the Decision Tree, Random 

Forest, and XGBoost regression 

algorithms. To minimize the mean squared 

validation error, the exhaustive grid search 

approach was employed to select the 

optimal hyperparameters for each model, 

with the aid of 5-fold cross-validation. The 

exhaustive grid search provided the best 

parameter settings that achieved the lowest 

average validation MSE for each of the 

respective algorithms, thus attaining a 

good trade-off between bias and variance 

[21]. 

The Decision Tree algorithm partitions the 

feature space by using splits that increase 

variance reduction according to the 

squared-error criterion. To avoid the over-

splitting and overfitting, three complexity 

parameters were tuned as explained below: 

• max_depth: (3, 5, 7, 10, 12, 15, 20, 

25) - Limits the depth of the tree to 

balance representation ability with 

overfitting risk. 

• min_samples_split: (2, 5, 10, 20) - 

Specifies the minimum number of 

samples to be used when making a 

split for a node. 

• min_samples_leaf: (1, 2, 4, 10) - 

Guarantees terminal nodes to have 

a reasonable quantity of 

observations, smoothening 

predictions in regions of sparsity. 

The Random Forest algorithm builds a 

series of decision trees by bootstrap 

aggregation (bagging) and random feature 

selection, thus reducing variance by 

averaging [22]. Four hyperparameters were 

explored: 

• n_estimators: (10, 50, 100, 200, 

400, 600, 800) - Controls the size 

of the forest of trees; larger forests 
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reduce variance more effectively at 

increased computational cost. 

• max_depth: (3, 5, 7, 10, 12) - Max 

out the depth of each tree to control 

individual complexity. 

• max_features: ("sqrt", "log2") - 

Controls the number of predictors 

considered at each split, 

introducing randomness which 

decorrelates individual trees 

further. 

• bootstrap: (True, False) - Switches 

sampling with or without 

replacement, evaluating the effect 

of bootstrap aggregation on 

ensemble stability. 

This extensive search guaranteed the 

choice of a forest configuration that 

minimized validation error while ensuring 

computational efficiency. XGBoost uses 

gradient tree boosting to train trees 

sequentially on the residuals of earlier 

iterations, with a squared-error loss 

combined with regularization to avoid 

overfitting. [23] Three of the most 

important parameters were optimized: 

• learning_rate: (0.01, 0.1, 0.3) - 

Scales the contribution of each new 

tree, with lower values promoting 

slow learning and improved 

generalization. 

• max_depth: (3, 5, 7, 10, 12) - Cuts 

off the depth of each boosted tree, 

balancing the ability to model 

complex patterns against 

overfitting. 

• n_estimators: (10, 50, 100, 200, 

400, 600, 800) – The total number 

of trees to be trained, more 

iterations allowing for more 

accurate residual correction, but 

also using more training time. 

By applying the grid search technique over 

these grids, the optimal balance among 

learning rate, tree complexity, and 

ensemble size was determined. 

 

3.3 Evaluation Measures 

Models’ performance was compared on an 

unseen test set of data against four 

complementary metrics chosen for their 

individual interpretive strengths in 

housing-market forecasting contexts: Root 

Mean Squared Error (RMSE), Mean 

Absolute Error (MAE), Mean Absolute 

Percentage Error (MAPE), and the 

coefficient of determination (R²). 

Root Mean Squared Error was selected 

since it punishes huge deviations more 

severely than small ones, aligning with the 

fact that huge pricing errors (e.g., 

underpricing a home by tens of thousands 

euros) are particularly unperformant for 

real-estate applications. By squaring 

residuals before averaging, RMSE rewards 

models that avoid occasional but big 

mispredictions, so it is a sensitive metric of 

worst-case performance. 

Mean Absolute Error provides a 

straightforward, linear measure of average 

prediction error in the same currency units 

as the target, which is euros. Unlike 

RMSE, MAE treats all errors equally and 

is thus more robust to outliers and more 

interpretable for stakeholders who require 

an intuitive sense of actual deviation from 

the actual sale price.  

To measure errors concerning scale, the 

Mean Absolute Percentage Error (MAPE) 

was applied. MAPE is a measure of the 

average deviation from the true price, thus 

allowing effective comparisons between 

segments with different levels of prices 

(e.g., comparing central business district 

penthouses with suburban apartments). The 

ratio measure is useful in providing 

decision-makers with the ability to 

measure the relative accuracy of the 

models. 

Finally, the coefficient of determination 

quantifies the degree to which observed 

price variation is accounted for by the 

model. A value of R2 close to 1 signifies 

strong explanatory power for market 

movements, while values close to zero 

imply that the predictor set fails to 

adequately capture systematic pricing 

patterns. Together, these four measures 

offer a complete and balanced evaluation 

of accuracy, robustness, relative error, and 
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goodness-of-fit, and thus allow for a strict 

comparison of the Decision Tree, Random 

Forest, and XGBoost models. 

 

4 Results and Discussions 

This chapter presents an in-depth view of 

both dataset features and exploratory 

analysis, along with each individual 

model's performance, and concludes with a 

comparative view of the trained models.  

 

4.1 Dataset Presentation 

The final dataset used in the analysis has 

8500 entities, each with the following 

independent variables based on type: 

• Continuous variables: 

o Built_area 

o Usable_surface 

o Lat 

o Lon 

o Metro_distance_in_meters 

o Distance_to_center 

o Floor_ratio 

• Integer Variables: 

o Year_built 

o Floor_number 

o Number_of_floors 

o Bedroom_count 

o Bathroom_count 

• Dummy variables: 

o Is_penthouse 

o Is_luxury 

o Is_first_floor 

o Is_last_floor 

o Is_detached 

 

 
Fig. 2. Correlation Matrix 

 

The correlation table in Figure 2 gives a 

general overview of the association 

between predictors and between predictors 

and the target variable. There is a moderate 

positive relationship between price and 

bathroom_count, bedroom_count, and 

usable_surface, which reflects the major 

role of building size and layout in 

influencing the price. In contrast, there is a 

weak negative relationship between 

distance_to_center and price, which shows 

that an increase in distance from the city 

center has the general tendency to lower 

the value of the properties. Furthermore, 

distance_to_center and 

metro_distance_in_meters have moderate 

positive relationships with year_built, 

which shows that newer constructions are 

most likely to be located far from the city 

center and metro stations. Finally, the 

strong relationship between 

usable_surface, built_area, 

bedroom_count, and bathroom_count 

supports the fact that larger living spaces 

usually have more bedrooms and bathroom 

counts. These findings reinforce the 

significant part played by structural and 

location variables in establishing the value 

of Bucharest residential properties. 

 

 
Fig. 3. Price per m2 based on the location 

of the apartment 

 

The hexbin map in Figure 3 illustrates 

price per square meter variability across 

the geography of the city. The higher 

values cluster together in the north-central 

suburbs, where there is high access speed 

to central amenities and a well-connected 

transport network, increasing demand. 

Prices fall off gradually from the center, 
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then fall lowest in the southern, eastern, 

and western peripheries—suburbs 

dominated by newly developed areas that 

haven't yet had time to experience the 

benefits of a fully settled urban 

infrastructure. 

 

4.2 Models Overview 

This chapter presents the final resulted 

models by the grid search algorithm along 

with their parameters and feature 

importance. 

For the Decision Tree Regressor, the 

optimal model based on the MSE value 

resulting from the grid search algorithm 

has the following parameters: 

• Max_depth: 10 

• Min_samples_leaf: 10 

• Min_samples_split: 2 

 

 
Fig. 4. Top 5 feature importances in 

Decision Tree Regressor 

 

The barplot presented in Figure 4 presents 

the top 5 characteristics by importance, 

which are used by the decision tree model 

to predict the final price of the residential 

building. The most important variable used 

in forecasting is the usable surface, but the 

geospatial data represented by latitude and 

longitude, along with the distance from the 

city center, also play a key role in 

predictions.  

 

Based on the same search algorithm, the 

optimised Random Forest algorithm has 

the following parameters: 

• Max_depth: 12 

• Max_features: ‘sqrt’ 

• N_estimators: 200 

• Bootstrap: False 

 
Fig. 5. Top 5 feature importances in 

Random Forest Regressor 

 

Figure 5 illustrates the top 5 features by 

importance used by the Random Forest 

model. The barplot also suggests that 

distance to city center, geospatial location, 

and the surface of the apartment are among 

the most important features used for price 

prediction. Regarding the Decision tree 

model, the Random forest model uses the 

built area of the apartment instead of the 

year built as one of the top 5 features. 

 

For the XGBoost ensemble model, the 

optimal parameters after training using the 

grid search algorithm are: 

• Learning_rate: 0.1 

• Max_depth: 7 

• N_estimators: 800 

•  

 
Fig. 6. Top 5 XGBoost feature importance 

 

Figure 6 presents the top 5 features used by 

the XGBoost model in predictions. In the 

same manner as the last models, the 

surface of the residential unit, the location, 

and the distance to the center are the main 

factors used in predictions. 
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4.3 Model Comparison 

 

Table 1. Performance of the models based on key indicators  
MAE RMSE MAPE R2 

Decision Tree 20487.65 32589.67 15.86 0.77 

XGBoost 15089.36 24296.89 11.88 0.87 

Random Forest 17134.86 26573.65 13.7 0.85 

 

This chapter will analyze and compare the 

performance of the studied models 

presented in Table 1. The single Decision 

Tree model, although very interpretable, 

performs the worst in terms of prediction 

among the three methods. It has a Mean 

Absolute Error (MAE) of approximately 

20,488 and a Root Mean Squared Error 

(RMSE) of 32,590 on the test set, meaning 

its point‐predictions tend to be short of 

actual values by a significant margin. Its 

MAPE of 15.9 % shows that, on average, 

predictions are different from actual prices 

by nearly one‐sixth, and its R² of 0.77 

shows that only 77% of the variability in 

sale prices is explained. This result 

illustrates the model's tendency to overfit 

patterns in the training data and not to 

smooth out noise between different regions 

of the feature space. 

By comparison, the Random Forest 

ensemble substantially reduces the bias and 

variance through the application of 

bootstrap aggregation. Its MAE is reduced 

to approximately 17,135 (a decrease of 16 

% relative to the Decision Tree), and its 

RMSE is reduced to 26,574, while the 

MAPE is reduced to 13.7 %. Such 

reductions yield an R² equal to 0.85, 

indicating that 85 % of residential prices' 

variance is accounted for by the model. 

The improved performance comes from 

averaging the predictions of 200 

decorrelated trees, each with a maximum 

depth of 12, which stabilizes estimates and 

lowers over‐fitting at the expense of less 

interpretability. 

Finally, the XGBoost model achieves the 

highest overall accuracy by sequentially 

correcting the residuals of its predecessor. 

It gives an MAE of 15,089 (26 % lower 

than the Decision Tree), an RMSE of 

24,297, and a MAPE of just 11.9 %, which 

corresponds to an R² of 0.87. Practically, 

this means the gradient‐boosted ensemble 

reduces average percentage error by nearly 

one‐quarter compared to the tree baseline 

and explains 87 % of price variation. 

Though slightly more complex to train and 

to tune, XGBoost's ability to learn subtle 

feature interactions and to penalize overly 

complex trees makes it the go-to when 

minimizing prediction error is top priority. 

 

5 Conclusion 

In this research, a thorough comparison of 

tree-based regression algorithms Random 

Forest, Decision Tree, and XGBoost for 

predicting apartment prices in residential 

apartments in Bucharest has been 

performed. Using a true transactional 

dataset collected in March 2025, which 

was subject to detailed preprocessing, 

missing-value imputation, one-hot 

encoded, and creating new spatial 

indicators, each model was optimized 

using grid search combined with five-fold 

cross-validation to reduce the mean 

squared error (MSE) as the goal function. 

Among the independent variables 

involved, geospatial variables like 

proximity to the city center, longitude, 

latitude, distance to metro station, and unit 

size measurements (usable area and built 

area) were the most critical indicators of 

the price. 

The results reveal a clear and noteworthy 

trend in the predictive accuracy. The single 

Decision Tree, while illustrating higher 

interpretability, incurred the largest testing 

errors, with the mean absolute percentage 

error being 15.9%. Application of the 

bootstrap averaging in the Random Forest 

approach reduced the mean error by 16%, 
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thereby attesting to the importance of 

variance reduction via ensemble methods. 

Finally, the gradient-boosted XGBoost 

model reported the lowest errors, 

demonstrating its ability to accurately 

make incremental corrections and discern 

complex, non-linear relationships. 

Practically, these findings suggest that 

ensemble methods, particularly XGBoost, 

are significantly better than single trees 

when reducing pricing error is the goal. 

Random Forest is a good compromise if 

interpretability and computational cost 

need to be balanced against performance. 

In the meantime, the Decision Tree 

remains a good benchmark for rapid 

prototyping and stakeholder 

communication because it has interpretable 

decision rules. 

Despite these advancements, some of these 

limitations remain to be explored in future 

research. First, our spatial attributes 

depend on fixed coordinates and do not 

account for dynamic urban factors such as 

traffic congestion or planned infrastructure 

development. Second, temporal dynamics 

(for instance, seasonality, macroeconomic 

data) were not explicitly modeled; 

employing time-series methods or adding 

lagged market indicators might enhance 

predictions further. Investigating these 

directions will contribute to real-time 

appraisal systems and support data-

informed decision-making in Bucharest's 

transitioning real estate market. 
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