
Database Systems Journal vol. XVI/2025 11

Query Completion for Small-Scale Distributed Databases in

PostgreSQL and MongoDB

Marin FOTACHE1, Cătălina BADEA2, Marius-Iulian CLUCI3, Codrin-Ștefan EȘANU4
1Dept.of Accounting, Information Systems and Statistics

Alexandru Ioan Cuza University of Iaşi, Faculty of Economics and Business Administration
2Alexandru Ioan Cuza University of Iaşi

3 Alexandru Ioan Cuza University of Iaşi, S.C. HVM SRL
4 Alexandru Ioan Cuza University of Iaşi, Cegeka Romania

Iaşi, Romania

fotache@uaic.ro, catalina.badea@student.uaic.ro, marius.cluci@uaic.ro,

codrin.stefan@feaa.uaic.ro

Relational/SQL and document/JSON data stores are competing but also complementary

technologies in the OLAP (On-Line Analytical Processing) systems. Whereas the traditional

approaches for performance comparison use the duration of queries performing similar tasks,

in this paper we compare the performance of two distributed setups deployed on

PostgreSQL/Citus and MongoDB by focusing only on the query’s successful completion

within a 10-minute timeout. The TPC-H benchmark database was converted into a

denormalized JSON schema in MongoDB. An initial set of 296 SQL queries was devised for

execution in PostgreSQL/Citus and then mapped for execution in MongoDB using

Aggregation Framework (AF). Query execution success within a 10-minute timeout was

collected for both PostgreSQL and MongoDB in six scenarios defined by two small-scale data

factors (0.01 and 0.1 GB) and three different node counts (3, 6, and 9) for data distribution

and processing. The relationships between the query completion and the query parameters

were assessed with statistical tests and a series of machine learning techniques.

Keywords: PostgreSQL, Citus, MongoDB, SQL, Aggregation Framework, OLAP

performance comparison.

Introduction

Current data architectures incorporate

various technologies for data storage and

processing, such as relational/SQL and

NoSQL data servers [1][2][3]. In this

paper, we analyse and compare the

OLAP [4] performance of PostgreSQL

and MongoDB on six distributed

configurations deployed on OpenStack

[5], by varying the database size and the

number of data distribution nodes.

For this purpose, we used the TPC-H

Benchmark [6] database and tools, to

populate the TPC-H database tables with

a specified volume of data. We started

with the original TPC-H schema,

devising a module to populate a

corresponding MongoDB schema by

transforming (mainly by nesting) the data

structure. This transformation allows a

MongoDB collection to integrate data

originally scattered across two or more

tables.

We developed a set of 296 SQL queries (for

the original TPC-H schema) that vary in

terms of number of joins, filter clauses, or

group clauses. Subsequently, this query set

was translated into MongoDB’s Aggregation

Framework (MAF) and adapted to the new

document database structure. In this new

structure, some of the joins between

collections become unnecessary, as the data

is denormalized and stored as nested arrays

inside documents.

The queries were run on both PostgreSQL

and MongoDB setups across six scenarios.

These scenarios were defined by the

combination of two small-scale factors (of

0.01GB and 0.1GB) and three distribution

architectures with 3, 6, and 9 nodes. A 10-

1

mailto:fotache@uaic.ro
mailto:catalina.badea@student.uaic.ro
mailto:marius.cluci@uaic.ro
mailto:codrin.stefan@feaa.uaic.ro

12 Query Completion for Small-Scale Distributed Databases in PostgreSQL and MongoDB

minute timeout was imposed for the

execution of each query. Queries that did

not complete within 600 seconds were

canceled.

The preliminary results on the

relationship between query completion

(for both database servers) and the

database size and the distribution setup

were presented in [6]. In this paper, we

examine the relationships between the

query completion and some parameters

describing the query complexity; we also

developed, tuned, and interpreted

Machine Learning (ML) classification

models for predicting query completion

on various predictors about database size,

distribution setup and query complexity.

The remaining of this paper is organized

as follows: section 2 examines the results

of some previous studies approaching the

performance comparison of SQL

(PostgreSQL) and document (MongoDB)

data stores. Section 3 provides a brief

overview of the distributed architectures

of Citus (a distributed PostgreSQL

solution) and MongoDB. Section 4

describes the experimental setup, data

analysis methods and tools used for

obtaining the results. Results are analyzed

in section 5. The paper concludes with

the main findings, pointing out the study's

main limitations, and some future

directions for research.

2 Previous studies on OLAP

performance comparison of SQL and

NoSQL database servers

Both PostgreSQL and MongoDB are

highly popular on the database market [7]

and a considerable body of literature

targeted their OLTP (On-Line

Transaction Processing) and/or OLAP

performance comparison. Results are far

from convergent, as seen below.

In [8] PostgreSQL outperformed

MongoDB. Güney and Ceylan [9] found

that MongoDB had certain advantages in

specific cases, particularly in data sorting

operations, while PostgreSQL performed

better in bulk data extraction and more

complex query operations. Villalobos et al.

[10] found that PostgreSQL performs more

efficiently with complex queries involving

intersection or combination functions, while

MongoDB is better suited for simpler

queries involving only filtering of

descriptive, non-geographic data. In [11]

MongoDB excelled in managing national

election data, with consistent execution

times regardless of operation size.

PostgreSQL also performed well, with

memory usage increasing linearly with the

size of the operation. Also, in [12]

MongoDB significantly outperformed SQL

Server in processing e-government data.

Yedilkhan et al. [13] showed that both

MongoDB and PostgreSQL are suitable for

particular use cases and scenarios. The

comparison was based on performance

evaluations conducted across multiple

clusters, including both cloud and on-

premises environments. In [14] MongoDB

outperformed PostgreSQL in terms of

latency. Makris et al. [15] concluded that

PostgreSQL performed better than

MongoDB when managing spatio–temporal

data. In [16] results showed that relational

databases are more efficient than non-

relational databases when executing the

basic types of database operations (CRUD –

Create, Read, Update, Delete).

Tracz and Plechawska-Wójcik [17] analyzed

the performance of relational and non-

relational databases using MS SQL Server,

MongoDB, and CouchDB. A total of 30 test

series were conducted for each database

server across the scenarios of interest, using

the following record counts: 500, 1000,

2000, 5000, and 10000; results revealed that

SQL Server ranks first, followed by

MongoDB in the second place, and

CouchDB as the least efficient of the three.

In [18] results indicated that NoSQL

databases are a better alternative to their

relational counterparts. Setyawan et al. [19]

found that MongoDB is well-suited for

handling large volumes of data, while

MySQL recorded optimal performance for

queries executed on a smaller scale.

Database Systems Journal vol. XVI/2025 13

Figueiredo et al. [20] showed that

PostgreSQL manages better data that is

well structured, due to its robust support

for complex queries. In their study, a 10

GB dataset was processed by each

database server, with three types of

queries: 1st, 5th and 6th (from the TPC-H

benchmark query-set) selected for

performance evaluation. Two testing

scenarios were employed, one involving

approximately 750 MB of data inserted

into PostgreSQL and MongoDB, and

another with a 10 MB file inserted into

HarperDB. On the response time,

PostgreSQL recorded the best database

performance.

Sals et al. (2023) [21] argued that

MongoDB outperforms MySQL in data

storage and processing capabilities.

Moreover, Antas et al. [22] concluded

that MongoDB has better results for

almost all large data volume tests;

similarly, in [23] MongoDB performed

better for CRUD operations. Abukabar et

al. [24] designed an evaluation

benchmark and identified that MongoDB

recorded superior performance in

handling CRUD operations, while

MySQL excels in executing stored

procedures. Matallah et al. [25] found

that MongoDB recorded smaller

execution time than MySQL for all types

of query operations. In [26] the results

showed that MongoDB had significantly

higher throughput than both MySQL and

PostgreSQL, particularly for small

transaction sizes, indicating that

MongoDB is a better choice for

applications which involve heavy writing

of indexed spatial data.

Reichardt et al. [27] compared the

performance of NoSQL data stores,

relative to their relational/SQL

counterparts. They found that MongoDB

is more suitable than MySQL for a wide

range of dataset sizes. Naufal et al. [28]

found MongoDB outperforms in the

Update and Delete operations based on

runtime differences.

3 Distributed architectures for

PostgreSQL/Citus and MongoDB.

Deployment on OpenStack

Citus is an open-source and easy-to-deploy

PostgreSQL extension which enhances

PostgreSQL by distributing the database

using horizontal scaling and parallel query

processing [29]. It utilizes multiple

PostgreSQL instances to distribute both data

and queries across the nodes (in this paper

we deployed distributed setups with 3, 6 and

9 nodes). Thus, it provides efficient

management of large datasets and high

query volumes. In a Citus cluster (see Fig.

1), data is divided into shards and distributed

across worker nodes. The master node

handles the metadata for the distributed

tables, coordinates query execution by

delegating tasks to worker nodes, and

aggregates the results. Worker nodes store

the data shards and execute the queries [30].

Fig. 1. Citus architecture ([29])

This architecture enables Citus to uphold the

robustness and flexibility of PostgreSQL. At

the same time, it delivers substantial

performance improvements for OLAP

workloads [31].

MongoDB is the most popular NoSQL

product [7] which proved to be a reliable

solution in providing database scalability,

flexibility, and high performance. The

database uses JSON-like documents with

flexible schemas, which makes it easier to

manage various data types and speeds up the

development process.

Moreover, it employs a sharding architecture

(Fig.2) to spread the processing load and

storage across multiple servers. By

horizontal scalability, MongoDB can handle

large volumes of data with good overall

performance in data processing. Data is split

14 Query Completion for Small-Scale Distributed Databases in PostgreSQL and MongoDB

into smaller, more manageable units

known as shards, which can be hosted on

separate servers or containers for better

and easier management.

Fig. 2. MongoDB architecture ([32])

MongoDB distributes queries across

these shards, allowing it to efficiently

handle large data volumes and high

traffic loads [32]. The data chunks are

duplicated among shards to ensure high

availability. Mongos instances route

queries and manage data distribution,

while config servers handle metadata and

configuration settings.

MongoDB supports replication through

replica sets, which further enhances data

availability and fault tolerance in critical

systems. Each replica set includes a

primary node for writes and multiple

secondary nodes that maintain copies of

the data, these are in pairs of 3 machines

in most cases. If failure occurs, one of the

secondary nodes is automatically

promoted to primary, ensuring minimal

downtime and data consistency.

More details on Citus and MongoDB

distributed setups are provided in section

4.3.

4 The experimental design. Research

method and tools.

We created an initial set of 296 SQL

queries (for the TPC-H benchmark

database) in PostgreSQL and translate

them into MongoDB Aggregation

Framework queries on a JSON schema

with nested arrays in collections (as

described in section 4.1). The queries

were executed multiple times on both

servers, with a 600-second timeout,

varying the database size (scale factor)

and the data distribution (the number of

nodes).

Whereas most of the previous studies

presented in section 2 assessed the database

performance with the query response times

metric, our research focuses on the

successful completion of queries within a

timeout period of 10 minutes. In [6] the

successful query completion was examined

in relation to the database server and the

nodes of data distribution using inferential

statistics. In this paper we approached a

series of research questions and sub-

questions, also concerning the query

successful completion, as follows:

• RQ1: Is the query completion/success

associated with the parameters describing

the query complexity?

o RQ1a: Is query completion

associated with the number of joins/lookups

in the query?

o RQ1b – Is query completion

associated with the number of filters

(predicates for record selection)?

o RQ1c – Is query completion

associated with the record grouping?

o RQ1d – Is query completion

associated with limiting the number of

records in the result?

• RQ2: Can the query successful execution

be predicted based on database size,

physical setup and query complexity

parameters?

o RQ2a: Do Machine Learning

classification models reliable predict the

success of query execution based on the

predictors related to the data volume, data

distribution and query complexity?

o RQ2b: Which are the most

important variables for the prediction of

query completion? How their distribution

influences the query success?

4.1 Database structure in PostgreSQL and

MongoDB

Since our study is focused on the OLAP

performance [33] of MongoDB and

PostgreSQL, we relied on the TPC-H

benchmark database. This benchmark

evaluates database systems performance by

Database Systems Journal vol. XVI/2025 15

using a series of business-oriented

queries (which we did not use in this

paper).

In PostgreSQL the database followed the

original TPC-H schema consisting of

eight tables, as represented in Fig. 3. For

details on the table attributes and

constraints, see [34] and [6].

Fig. 3. TPC-H database schema ([34] [6])

When devising the corresponding

MongoDB collections, we did not simply

map the PostgreSQL tables into “flat”

collections. Instead, we combined some

tables through nesting and thus we

incorporate some redundancy into the

database. The resulting collections were:

• customer_nation

• lineitem

• lineitem_orders

• lineitem_partsupp

• part

• partsupp

• region

• supplier_nation.

Collections with simple names mirror the

PostgreSQL tables directly, containing a

straightforward JSON representation with

the same attributes. The compounded

collections, identified by names with

underscores, merge data from two

PostgreSQL tables. These collections are

designed to reflect more complex

relationships by nesting documents and

arrays. As illustrated in Fig. 4, each

document in the lineitem_orders

collection represents an order from the

orders table which includes (lines 7 to 29

in Fig. 4) an array of line items associated

with that order, integrating data from both

the orders and lineitem tables.

Fig. 4. Structure of a document in collection

lineitem_orders ([6])

In PostgreSQL the join is required when

extracting data from both lineitem and

orders tables; but in MongoDB's

Aggregation Framework, this join ($lookup

function) is not needed because all the

relevant data is contained within a single

collection.

In MongoDB the names of the collections

which map two PostgreSQL tables are

formatted with the child table’s name on the

left side of the underscore and the parent

table’s name on the right side. In collection

lineitem_orders, lineitem is the child table

and table orders is the parent. Each

document in this collection corresponds to a

record from the parent table (orders), and

within each document, there is an array that

stored all related records from the child table

(lineitem).

4.2 SQL and Aggregation Framework

Queries

The initial 296-query set (written in the

PostgreSQL dialect of SQL) was devised to

ensure some variability on the parameters

describing the query complexity, as

contained in the SELECT, FROM, WHERE,

GROUP BY, ORDER BY, LIMIT/FETCH

and OFFSET/SKIP clauses. The query set

16 Query Completion for Small-Scale Distributed Databases in PostgreSQL and MongoDB

was converted into the syntax of the main

declarative query language in MongoDB

– the Aggregation Framework,

considering the new (nested) JSON

structure.

Table 1 illustrates two scenarios of

mapping SQL queries to the Aggregation

Framework language, considering the

MongoDB's “nested” structure (using

arrays). In SQL, the 187th query involves

a join between customer, orders, lineitem

and partsupp tables. For the same query in

MongoDB, Aggregation Framework uses

the $lookup method to achieve a similar

effect by joining data from different

collections. By contrast, the 277th query

requires join only in SQL, because in

Aggregation Framework there is no need for

join since all query data are stored in a

single collection, customer_nation.

Table 1. Two examples of query mapping

Query/

Syntax

 Query content

Q187

in SQL

select customer.c_name, orders.o_orderdate,

lineitem.l_quantity,partsupp.ps_availqty

from customer

join orders on customer.c_custkey = orders.o_custkey

join lineitem on lineitem.l_orderkey = orders.o_orderkey

join partsupp on lineitem.l_partkey = partsupp.ps_partkey

where l_quantity < 5 and l_tax > 0.05 and l_discount > 0.08 limit 800;

Q187

in AF

db.customer_nation.aggregate([{$unwind: ""$customer""},

{$lookup: {from:""lineitem_orders"",

localField:""customer.c_custkey"",

foreignField: ""o_custkey"", as: ""orders_1join""}},

{$unwind: ""$orders_1join""},

{$lookup: {from: ""lineitem"",localField: ""orders_1join.o_orderkey"",

foreignField: ""l_orderkey"", as: ""lineitem_2join""}},

{$match: {""lineitem_2join.l_quantity"": {$lt: 5},

""lineitem_2join.l_tax"": {$gt: 0.05},

""lineitem_2join.l_discount"": {$gt: 0.08}}},

{$lookup: {from: ""partsupp"",localField: ""lineitem_2join.ps_partkey"",

foreignField: ""l_partkey"",as: ""partsupp_3join""}},

{$project: { _id: 0, c_name:""$customer.c_name"",

o_orderdate:""$orders_1join.o_orderdate"", l_quantity:

""$lineitem_2join.l_quantity"",

ps_availqty: ""$partsupp_3join.ps_availqty""}}, {$limit: 800}]);

Q277

in SQL

select count(c_custkey), n_name

from customer

join nation on customer.c_nationkey = nation.n_nationkey

where c_acctbal > 0 and c_mktsegment = 'FURNITURE' and n_regionkey = 1

group by n_name;

Q277

in AF

db.customer_nation.aggregate([

{$unwind: "$customer"},

{$match: {"customer.c_acctbal": { $gt: 0 }}}, {$match:

{"customer.c_mktsegment": "FURNITURE "}}, {$match: {"n_regionkey":

1}},{$group: {_id:"$n_name",NumberOfCustomer: { $sum: 1 }}},

{$project: {_id: 0, n_name: "$_id",NumberOfCustomer:1}}

]);

When translating the SQL queries into

MongoDB Aggregation Framework

queries for yielding the equivalent results,

we strived to maintain simplicity in the

syntax for both languages.

4.3 Physical Setup

The experimental setup was deployed on the

RaaS-IS platform, which operates as a

private cloud managed by OpenStack, as

described in [6]. The RaaS-IS datacentre

Database Systems Journal vol. XVI/2025 17

architecture includes 20 servers: 3

controller nodes to ensure high

availability of OpenStack services, 16

compute nodes for Virtual Machine and

container provisioning, and a

management server responsible for

MAAS, Juju, LDAP, and network

management. The storage infrastructure

uses an HPE 3PAR 8440 SAN with a

total raw capacity of 760 TB, of which

550 TB is usable, and includes an 8 TB

SSD cache for enhanced performance.

The SAN’s NL-SAS HDDs are set up in

RAID 5, while the SSD cache uses RAID

6 to deliver higher performance. The

compute nodes have dual Intel Xeon

Gold 6240 CPUs (18 cores, 2.6 GHz

each), 128 GB of RAM@2933MHz, and

300 GB SAS drives in RAID 1. Together,

these provide 1152 virtual cores and 2 TB

RAM for the RaaS-IS project and

infrastructure.

4.3.1 PostgreSQL Citus Cluster Setup

The Citus cluster was configured and

partially deployed using the OpenStack

Heat orchestration module, which allows

for Infrastructure as Code (IaC) using

built-in OpenStack tools. The cluster was

set up on virtual machines within the

cluster nodes running a custom-

configured Ubuntu Linux 18.04.6 LTS

(kernel version 4.15.0-213-generic),

along with TPC-H v3.0 and Citus v11.3.

To streamline cluster management,

custom bash scripts were developed to

enhance monitoring, result retrieval, and

automated deployment.

The Citus cluster consisted of 10

machines, designed to provide distributed

parallel query execution and scalability

for analytical workloads. The cluster

setup was as follows:

• Coordinator Node (1 machine):

This node served as the primary entry

point for queries, distributing them across

worker nodes while maintaining metadata

and query routing.

• Worker Nodes (9 machines):

These nodes handled data storage and

parallel execution of queries, improving

performance for analytical workloads

4.3.2 MongoDB Sharded Cluster setup

The MongoDB cluster was configured and

partially configured using the OpenStack

Heat orchestration module. This module

uses built-in OpenStack tools to allow

Infrastructure as Code (IaC). The MongoDB

cluster was set up on virtual machines

within the compute nodes, using a custom-

configured Ubuntu Linux 18.04.6 LTS

(kernel version 4.15.0-213-generic), TPC-H

v3.0, and MongoDB v6.0.14. A set of bash

scripts was developed to improve

monitoring and configuration for retrieving

results and automating the cluster setup.

The MongoDB cluster comprised 13

machines configured to ensure optimal

performance and reliability, mirroring a

typical production environment.

The servers were organized as follows:

▪ Router Node (1 machine): This server

directed client requests to the correct

shard.

▪ Config Nodes (3 machines) – these nodes

managed the cluster's metadata and

configuration, ensuring smooth operation.

▪ Shards (9 machines): The data was spread

across three shards, each with three

replica sets. Each set included a primary

node for write operations and two

secondary nodes for redundancy and high

availability. The number of shards could

be adjusted depending on the test

scenario.

Each machine was set up with 4 cores, 4GB

of RAM, and a 200GB storage volume on

the SAN.

4.4 Variables (outcomes and predictors)

Table 2 shows the variables used in the

analysis. The first three variables define the

physical setup of each scenario in the

experiment. Variable success refers to the

outcome of the query execution (whether it

was completed within the 10-minute

timeout).

18 Query Completion for Small-Scale Distributed Databases in PostgreSQL and MongoDB

Table 2. Variable description
Variable Description

db_server name of the DBMS

scale_factor size of the DBMS

n_of_nodes number of nodes used for data distribution

success binary variable whose value is TRUE when the query was successfully

completed within the 10-minute timeout, and FALSE otherwise

join number of JOIN clauses (PostgreSQL), equivalent to $lookup

(MongoDB)

where number of WHERE clauses (PostgreSQL), equivalent to $match

(MongoDB)

count number of COUNT clauses (PostgreSQL), equivalent to count:

(MongoDB)

group_by number of GROUP BY clauses (PostgreSQL), equivalent to $group

(MongoDB)

having number of HAVING clauses (PostgreSQL), equivalent to $match

(MongoDB)

limit number of LIMIT clauses (PostgreSQL), equivalent to $limit

(MongoDB)

The variable names related to the query

complexity are inspired from the SQL

syntax, and the second column points to

the Aggregation Framework equivalent

feature.

4.5 Method and tools for data analysis

For RQ1a-RQ1c the analysis relied on

classical inferential statisticss. For RQ2a

and RQ2b we built, tuned and interpreted

a series of ML classification models

based on two of the most popular

classification algorithms, Random Forest

and Extreme Gradient Boosting

(XGBoost) algorithms.

After the query results and parameters

were collected and integrated, the dataset

was examined using Exploratory Data

Analysis. The Chi-square test of

independence was applied to assess the

association between nominal variables.

We employed Random Forest and

XGBoost to identify the most important

predictors for the success of query

execution.

The dataset was processed and analyzed

using R programming language [35],

employing tools from the tidyverse package

collection [36] along with ggstatsplot [37].

The tidyverse suite is a set of R packages

designed for data manipulation and

visualization, while ggstatsplot and rstatix

provide additional functionalities for

statistical analysis and visualization of

results. All models were built and tuned with

the tidymodels ecosystem [38].

All the Interpretable ML techniques

(Variable Importance, Partial Dependency

Profiles, Individual Conditional Expectation,

and Accumulated Local Effects Profiles)

were deployed using the DALEX ecosystem

([39]).

5 Results and discussion

All 296 queries were run on both database

servers across six different scenarios. The

chart in Fig. 5 illustrates the distribution of

query parameters, providing a glimpse into

the queries complexity.

Database Systems Journal vol. XVI/2025 19

66%

33%

39%

33%

13% 13%

66%

33%

50% 49%

93%

6%

45%

13%

20% 20%

join limit where

0 1 0 1 0 1

0

100

200

0

50

100

0

50

100

150

200

0

50

100

150

count group_by having

0 1 2 3 0 1 0 1 2 3

0

50

100

150

200

0

30

60

90

120

frequency

n
_

va
lu

e

Fig. 5. Distribution of queryparameters

The chart reveals that 33% of the queries

involved grouping records and

performing aggregation by counting the

records within each group, 45% had no

filters applied, and roughly half of the

queries imposed a limit on the result size.

As presented in [6], there is a correlation

between query completion (within the 10-

minute timeout) and the database server.

Of the 3552 queries executed across both

servers in all six scenarios, 315 failed to

complete. Of these, 309 failed on

MongoDB, while only six failed on

PostgreSQL/Citus. Of the 3237

successful queries, 1770 (55%) were

executed on Citus, with the remaining

1467 (45%) completed on MongoDB.

Also, [6] found that the relationship

between query completion (within the 10-

minute timeout) and the data distribution

setup differs between database servers. In

Citus, the proportion of successful

queries remains consistent across the

three data distribution scenarios.

However, MongoDB shows more

variability: the 6-node setup had the

highest failure rate, while the 9-node

setup performed the best.

The subsequent series of statistical tests

concerned the associations between the

successful query completion and some

variables describing the query

complexity. To start with RQ1a: (Is query

completion associated with the number of

joins/lookups in the query?), Fig. 6 shows

the results of the Chi-Square test of

independence between variables success and

joins for PostgreSQL/Citus (left) and

MongoDB (right).

240

(14%)

240

(14%)

6

(100%)

594

(34%)

696

(39%)

 p = 1.41e−82 p = 4.40e−04

(n = 1,770)(n = 6)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

FALSE TRUE
success

join 3 2 1 0

cPearson

2
(3) = 11.80, p = 8.10e−03, VCramer = 0.07, CI95% [0.00, 0.12], nobs = 1,776

sucess vs. joins − PostgreSQL/Citus

82

(27%)

158

(11%)

68

(22%)

172

(12%)

81

(26%)

519

(35%)

78

(25%)

618

(42%)

 p = 7.50e−99 p = 0.66

(n = 1,467)(n = 309)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

FALSE TRUE
success

join 3 2 1 0

cPearson

2
(3) = 91.83, p = 8.84e−20, VCramer = 0.22, CI95% [0.17, 0.27], nobs = 1,776

sucess vs. joins − MongoDB

Fig. 6. Association query success vs.

number of joins

In Citus, successful and unsuccessful queries

recorded a similar average number of joins

(1). By contrast, in MongoDB, the

joins/lookups appear more costly since for

the completed queries (1467), the average

number of joins was 0.91, whereas, for the

canceled queries (309), the average number

of joins was 1.50.

For Citus, the Chi-square test of

independence indicated a p-value below

0.05 and an effect size (Cramer's V) of 0.07,

20 Query Completion for Small-Scale Distributed Databases in PostgreSQL and MongoDB

providing evidence to state that the

number of joins is significantly linked to

the successful completion of queries

within the 10-minute timeout.

Meanwhile, for MongoDB, the Chi-

square test computed a p-value less than

0.05 and a Cramer's V effect size of 0.22,

which offer support to state that the

number of joins is significantly related

with the successful completion of queries

within the 10-minute timeout.

Regarding RQ1b (Is query completion

associated with the number of filters

/predicates for record selection?), Fig.7

shows the results of the Chi-Square test

of independence between variables

success and filters for Citus (left) and

MongoDB (right).

360

(20%)

360

(20%)

240

(14%)
6

(100%)

810

(46%)

 p = 1.38e−92 p = 4.40e−04

(n = 1,770)(n = 6)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

FALSE TRUE
success

where 3 2 1 0

cPearson

2
(3) = 7.08, p = 0.07, VCramer = 0.05, CI95% [0.00, 0.09], nobs = 1,776

success vs. filters − PostgreSQL/Citus

55

(18%)
305

(21%)

75

(24%)

285

(19%)

25

(8%)
215

(15%)

154

(50%)
662

(45%)

 p = 5.00e−71 p = 2.01e−25

(n = 1,467)(n = 309)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

FALSE TRUE
success

where 3 2 1 0

cPearson

2
(3) = 13.46, p = 3.75e−03, VCramer = 0.08, CI95% [0.00, 0.12], nobs = 1,776

success vs. filters − MongoDB

Fig. 7. Association success vs. number of

filters

In Citus, for the successful queries

(1770), the average number of filters was

1.14 and for the unsuccessful queries (6)

the average number of filters was 0. In

MongoDB, successful and unsuccessful

queries recorded a similar average

number of filters, ~ 1.

For Citus, the Chi-square test recorded a

p-value greater than 0.05 and an effect

size (Cramer's V) of 0.05, suggesting that

the number of filters is not associated

with the successful completion of queries.

Similarly, for MongoDB, the Chi-square

computed a p-value smaller than 0.05 and

an effect size (Cramér's V) of 0.08,

indicating that the number of predicates is

not significantly associated with the

successful completion of queries, just as

observed in Citus.

Addressing the next research question, RQ1c

- Is query completion associated with

grouping (aggregation) the records?, Fig. 8

shows the findings of the Chi-Square test of

independence between the variables success

and group_by for both Citus (left) and

MongoDB (right).

In Citus, the unsuccessful queries (6)

included those that were executed without

any record grouping. In the case of

successful queries (1770), 66% were

executed without record grouping, whereas

34% included it. In contrast, MongoDB

experienced 309 unsuccessful queries, the

majority of which did not feature record

grouping, while out of 1467 successful

queries, only 37% included record grouping.

6

(100%)

1,170

(66%)

600

(34%)

 p = 8.10e−42 p = 0.01

(n = 1,770)(n = 6)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

FALSE TRUE
success

group_by no groups groups

cPearson

2
(1) = 3.07, p = 0.08, VCramer = 0.03, CI95% [0.00, 0.08], nobs = 1,776

success vs. group_by − PostgreSQL/Citus

259

(84%)

917

(63%)

50

(16%)

550

(37%)

 p = 9.53e−22 p = 1.34e−32

(n = 1,467)(n = 309)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

FALSE TRUE
success

group_by no groups groups

cPearson

2
(1) = 51.81, p = 6.10e−13, VCramer = 0.17, CI95% [0.12, 0.22], nobs = 1,776

success vs. group_by − MongoDB

Fig. 8. Association success vs. record

grouping

For Citus, the Chi-square test computed a p-

value greater than 0.05 and an effect size

(Cramer's V) of 0.03, which fail to support a

significant association between record

grouping and query completion. Conversely,

for MongoDB, the Chi-square test of

independence showed a p-value less than

0.05 and a higher effect size (0.17), which

points to a strong association between record

grouping and query completion.

Regarding the subsequent research question,

RQ1d – Is query completion associated with

fixing a limit of records in the result?, Fig. 9

presents the outcomes of the Chi-Square test

of independence between variables success

and limit for Citus (left) and MongoDB

(right).

In Citus, the unsuccessful queries (6) were

Database Systems Journal vol. XVI/2025 21

those executed without limiting the result

size, whereas for the successful queries

(1770), more than a half of queries were

executed without result size limitation. In

contrast, MongoDB recorded 309

unsuccessful queries, the majority of

which did not impose a limit on the result

size. Among the 1467 successful queries,

less than a half of the total applied a size

limitation.

600

(34%)

6

(100%)

1,170

(66%)

 p = 8.10e−42 p = 0.01

(n = 1,770)(n = 6)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

FALSE TRUE
success

group_by 1 0

cPearson

2
(1) = 3.07, p = 0.08, VCramer = 0.03, CI95% [0.00, 0.08], nobs = 1,776

success vs. result limiting − PostgreSQL/Citus

50

(16%)

550

(37%)

259

(84%)

917

(63%)

 p = 9.53e−22 p = 1.34e−32

(n = 1,467)(n = 309)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

FALSE TRUE
success

group_by 1 0

cPearson

2
(1) = 51.81, p = 6.10e−13, VCramer = 0.17, CI95% [0.12, 0.22], nobs = 1,776

success vs. result limiting − MongoDB

Fig. 9. Association of success and

limiting the result size

For Citus, the Chi-square test of

independence revealed a p-value greater

than 0.05 and an effect size (Cramer's V)

of 0.03, so limiting the result size seems

not to be associated with the successful

completion of queries. Alternatively, for

MongoDB, the p-value of the test was

below 0.05 and the effect size (0.17) was

higher; for this database server, limiting

the result size seems associated with the

query completion.

Next, we examined whether the predictors in

Table 2 can reliably predict the query

completion. We built and tuned a series of

ML classification models, with

query_completion (variable that recorded the

query success) as the outcome (target) and

the remaining variables in Table 2 as the

predictors. As described in Section 4.5, only

two classification algorithms were employed

for this paper, Random Forest (RF) and

XGBoost. The metric performance for

selecting the best model was ROC_AUC.

Best RF performance was recorded for the

hyper-parameter combination of mtry = 9

and min_n = 13, whereas for the best hyper-

parameter combination for XGB was

mtry=7, min_n=5, tree_depth=9,

learn_rate=0.0618,

loss_reduction=0.0000000189, and

sample_size =0.509.

Fig.10 displays the performance of both

algorithms on the new data (the test test). RF

slightly overperformed XGB, with a

ROC_AUC of 0.968 (relative to 0.965 for

XGB). Recorded accuracy was higher for

XGB - 0.950 (relative to 0.945 for RF).

Consequently, for further estimation of

predictor’s importance, the RF best model

was preferred.

0.00

0.25

0.50

0.75

1.00

s
e
n

s
it
iv

it
y

0.00 0.25 0.50 0.75 1.00

1 − specificity

Random Forest

0.00

0.25

0.50

0.75

1.00

s
e
n

s
it
iv

it
y

0.00 0.25 0.50 0.75 1.00

1 − specificity

XGBoost

Fig. 10. Performance of the tuned classification models on the test set

Fig. 11 displays the permutation-based

importance of variables as estimated by

the RF algorithm. The graphical

representation shows that the variable

db_server_pg.citus has the highest

importance, as permuting this variable

results in the most significant performance

loss, followed by the variables join,

22 Query Completion for Small-Scale Distributed Databases in PostgreSQL and MongoDB

scale_factor and n_of_nodes. Variables

group_by, having, and count have the

lowest importance with a minimal impact on

the model's performance.

0.1 0.2 0.3

having

count

group_by

limit

where

scale_factor

n_of_nodes

join

db_server_pg.citus

One minus AUC loss after permutations

Selected Classification Random Forest Model

Permutation−Based Variable Importance

Fig. 11. Permutation-based variable importance on RF classification model

The six most influential variables in

Fig.11 were selected for computing and

displaying their effects on the average

prediction of the outcome probability

(probability of query to be successfully

completed), using some techniques of

interpretable ML. Fig. 12 shows three

metrics describing the predictor’s effect,

Partial Dependency Profiles (PDP),

Conditional Dependency Profiles (CDP) and

Accumulated Local Effects Profiles (ALE).

n_of_nodes scale_factor where

0.00 0.25 0.50 0.75 1.00 0 1 2 3 0.00 0.25 0.50 0.75 1.00

db_server_pg.citus join limit

4 6 8 0.025 0.050 0.075 0.100 0 1 2 3

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

a
v
e

ra
g
e

 p
re

d
ic

ti
o

n

ALE

CDP

PDP

Partial Dependence Profiles (PDP)
Conditional Dependence Profiles (CDP)

Accumulated Local Effects Profiles (ALE)

Feature Effects for the Selected Random Forest Classification Model

Fig. 12. Model explanations for the selected RF classification model.

Database Systems Journal vol. XVI/2025 23

Regarding the db_server_pg.citus

variable, the average prediction of query

completion probability appears to be

positively associated with the use of the

Citus database server, as indicated by the

upward trend of the curve. For the join

variable, the average prediction of query

completion probability decreases as more

joins are added in constructing the query.

Regarding variable limit, setting a limited

size of records contributes to achieving a

higher average prediction. As for the

n_of_nodes variable, employing either 3

or 9 nodes increase the odds of success

for query completion. Unexpectedly, the

influence of the database size

(scale_factor) does not seem to differ

between the two levels relatively, which

can be explained by the small scales of

0.01 and 0.1 GB used. As for variable

where, the average prediction of query

completion increases when additional

where clauses are added into the query.

6 Conclusion

Consistent with some of the earlier

research, our findings indicate that

distributed PostgreSQL/Citus

outperforms MongoDB regarding query

performance for smaller databases, even

when both systems are subjects of the

same requirements and physical

resources. Also, we identified that the

most critical factor influencing query

execution is the type of database server,

followed by the complexity of joins used

in query construction and the data

distribution setup.

The primary limitation of the

experimental setup is the small database

size, which, at 0.01 GB and 0.1 GB, is

modest by OLAP standards. Additional

limitations include the relatively small

query set (296 queries), the complexity of

the queries, and the brief 10-minute

timeout imposed for query execution.

Future experiments on the setup should

involve processing larger datasets and

employing different data nesting

structures in MongoDB collections.

Moreover, increasing the query set size,

expanding the variability of query

parameters, and exploring various data

distribution scenarios could provide more

comprehensive insights.

7 Acknowledgment

Data processing and analysis for this study

were supported by Competitiveness

Operational Program Romania under project

SMIS 124759 - RaaS-IS (Research-as-a-

Service Iasi).

References

[1] C. Madera and A. Laurent, “The next

information architecture evolution: the

data lake wave,” in Proc. 8th Int. Conf.

on Management of Digital EcoSystems

(MEDES), 2016, pp. 174-180. doi:

10.1145/3012071.3012077.

[2] F. Naregsian, E. Zhu, R. Miller, K. Pu,

and P. Arocena, “Data Lake

Management: Challenges and

Opportunities,” Proc. VLDB Endow.,

vol. 12, no. 12, pp. 1986-1989, 2019.

doi: 10.14778/3352063.3352116.

[3] P. Pedreira, O. Erling, K. Karanasos, S.

Schneider, and W. McKinney, “The

Composable Data Management System

Manifesto,” Proc. VLDB Endow., vol.

16, no. 10, pp. 2679-2685, 2023. doi:

10.14778/3603581.3603604.

[4] D. Martinez-Mosquera, “Integrating

OLAP with NoSQL Databases in Big

Data Environments: Systematic

Mapping,” Big Data Cogn. Comput., vol.

8, no. 6, 2024.

[5] K. Prabhakar, J. Kurunandan, A. Amjad,

P. Prabu, and B. Rajkumar,

“OpenStackDP: A scalable network

security framework for SDN-based

OpenStack cloud infrastructure,” J.

Cloud Comput.: Adv. Syst. Appl., vol. 12,

no. 1, 2023. doi: 10.1186/s13677-023-

00406-w.

[6] M. Fotache, C. Badea, M. I. Cluci, C.

Pinzaru, C. S. Esanu, and O. Rusu,

“OLAP Performance of Distributed

PostgreSQL and MongoDB on

24 Query Completion for Small-Scale Distributed Databases in PostgreSQL and MongoDB

OpenStack. Preliminary Results on

Smaller Scale Factors,” in Proc. 23rd

RoEduNet Conf.: Networking in

Education and Research,2024, doi:

10.

1109/RoEduNet64292.2024.1072255

6

[7] DB Engines Ranking [Online].

https://db-engines.com/en/ranking.

[8] A. Makris, K. Tserpes, G.

Siliopoulos, D. Zissis, and D.

Anagnostopoulos, “MongoDB vs

PostgreSQL: A comparative study on

performance aspects,”

Geoinformatica, vol. 25, pp. 243–268,

2021. doi: 10.1007/s10707-020-

00407-w.

[9] E. Güney and N. Ceylan, “Response

Times Comparison of MongoDB and

PostgreSQL Databases in Specific

Test Scenarios,” in ICST Institute for

Computer Sciences, Social

Informatics and Telecommunications

Engineering, 2022, pp. 178–188.

[10] M. T. Villalobos, L. V. Acuna, and

R. Q. Oviedo, “Comparison of the

Response Times of MongoDB and

PostgreSQL According to Type of

Query in Geographical Databases,”

Computación y Sistemas, vol. 24, no.

4, pp. 1461–1469, 2020.

[11] L. G. Wiseso, M. Imrona, and A.

Alamsyah, “Performance Analysis of

Neo4j, MongoDB, and PostgreSQL

on 2019 National Election Big Data

Management Database,” in

International Conference on Science

in Information Technology, Palu,

Indonesia, 2020.

[12] A. Flores, S. Ramírez, R. Toasa, J.

Vargas, R. U. Barrionuevo, and J. M.

Lavin, “Performance Evaluation of

NoSQL and SQL Queries in

Response Time for the E-

government,” in 2018 International

Conference on eDemocracy &

eGovernment (ICEDEG), 2018, pp.

257–262. doi:

10.1109/ICEDEG.2018.8372362.

[13] Y. D. Mukasheva, A. Bissengaliyeva,

D. Suynullayev, “Performance Analysis

of Scaling NoSQL vs SQL: A

Comparative Study of MongoDB,

Cassandra, and PostgreSQL,” in 2023

IEEE International Conference on Smart

Information Systems and Technologies

(SIST), Astana, Kazakhstan, 2023, pp.

479–483. doi:

10.1109/SIST58284.2023.10223568.

[14] M. M. Eyada, W. Saber, M. M. El

Genidy, and F. Amer, “Performance

Evaluation of IoT Data Management

Using MongoDB Versus MySQL

Databases in Different Cloud

Environments,” IEEE Access, vol. 8, pp.

110656–110668, 2020. doi:

10.1109/ACCESS.2020.3002164.

[16] W. Ali, M. U. Shafique, M. A. Majeed,

and A. Raza, “Comparison between SQL

and NoSQL databases and their

relationship with Big Data analytics,”

Asian Journal of Research in Computer

Science, vol. 4, no. 2, pp. 1–10, 2019.

Article no. AJRCOS.51946, ISSN: 2581-

8260.

[15] A. Makris, K. Tserpes, G. Spiliopoulos,

and D. Anagnostopoulos, “Performance

evaluation of MongoDB and

PostgreSQL for spatio-temporal data,” in

EDBT: 22nd International Conference

on Extending Database Technology,

Lisbon, Portugal, 2019, pp. 1–9.

[16] R. Čerešňák and M. Kvet, “Comparison

of query performance in relational and

non-relational databases,” in Proc. of the

13th Scientific Conference on

Sustainable, Modern and Safe Transport

(TRANSCOM 2019), Novy Smokovec,

vol. 40, pp. 170–177, May 29–31, 2019.

doi: 10.1016/j.trpro.2019.07.027.

[17] P. M. Tracz and M. Plechawska-

Wójcik, “Comparative analysis of the

performance of selected database

management system,” Journal of

Computer Sciences Institute, vol. 31, pp.

89–96, 2024. doi: 10.35784/jcsi.5927.

[18] A. M. Kausar and M. Nasar, “SQL

Versus NoSQL Databases to Assess

Their Appropriateness for Big Data

https://db-engines.com/en/ranking

Database Systems Journal vol. XVI/2025 25

Application,” Recent Advances in

Computer Science and

Communications, vol. 14, no. 4, 2021,

doi:

10.2174/22132759126661910281116

32

[19] A. B. Setyawan, I. A. Kautsar, and

N. L. Azizah, “Query Response Time

Comparison SQL and No SQL for

Contact Tracing Application,” in

Proceedings of the 4th Seminar

Nasional Sains. Procedia of

Engineering and Life Science, vol. 2,

no. 2, 2022, doi:

https://doi.org/10.21070/pels.v2i2.129

6.

[20] D. Figueiredo, G. Saraiva, J. Rebelo,

R. Rodrigues, F. Cardoso, C.

Wanzeller, P. Martins, and M.

Abbasi, “Performance Evaluation

Between HarperDB, Mongo DB and

PostgreSQL,” in Marketing and

Smart Technologies. ICMarkTech

2022. Smart Innovation, Systems and

Technologies, vol. 344. Springer,

2024. doi:

https://doi.org/10.1007/978-981-99-

0333-7_7.

[21] M. Sals, A. Sghir, N. Rafalia, and J.

Abouchabaka, “Analysis and

comparison of NoSQL databases with

relational databases: MongoDB and

HBase versus MySQL,” International

Journal on Technical and Physical

Problems of Engineering (IJTPE),

vol. 55, no. 15, pp. 155–161, June

2023, ISSN 2077-3528.

[22] J. Antas, R. R. Silva, and J.

Bernardino, “Assessment of SQL and

NoSQL Systems to Store and Mine

COVID-19 Data,” Computers, vol.

11, no. 2, pp. 29, 2022. doi:

https://doi.org/10.3390/computers110

20029.

[23] B. Alyasiri, B. Sahi, and N. AL-

Khafaji, “NoSQL: Will it be an

alternative to a relational database?

MySQL vs MongoDB comparison,”

in Proceedings of 2nd International

Multi-Disciplinary Conference

Theme: Integrated Sciences and

Technologies, IMDC-IST 2021, Sakarya,

EAI, 7-9 September 2021. doi:

10.4108/eai.7-9-2021.2314925.

[24] M. Abukabar, S. Abukabar, and U. M.

Bello, “Analyzing and Designing an

Evaluation Benchmark for SQL and

NoSQL Database Systems for Some

Selected Higher Institution in Zamfara

State,” International Journal of Science

for Global Sustainability (IJSGS), vol.

10, no. 2, p. 63, 2024, doi:

10.57233/ijsgs.v10i2.644.

[25] H. Matallah, G. Belalem, and K.

Bouamrane, “Comparative study

between the MySQL relational database

and the MongoDB NoSQL database,”

International Journal of Software

Science and Computational Intelligence

(IJSSCI), vol. 13, no. 3, pp. 38–63, 2021.

doi: 10.4018/IJSSCI.2021070104.

[26] C. Axell, E. Schøien, I. L. Thon, L. O.

Vågene, and L. Tveiten, “Insertion speed

of indexed spatial data: comparing

MySQL, PostgreSQL and MongoDB,”

2022. [Online]:

https://folk.idi.ntnu.no/baf/eremcis/2022/

Group02.pdf.

[27] M. Reichardt, M. Gundall, and H. D.

Schotten, “Benchmarking the operation

times of NoSQL and MySQL databases

for Python clients,” in IECON 2021 –

47th Annual Conference of the IEEE

Industrial Electronics Society, Toronto,

Canada, 2021, pp. 1-8, doi:

10.1109/IECON48115.2021.9589382.

[28] N. Naufal, S. Nurkhodijah, G. B.

Anugrah, A. Pratama, M. I. Rabbani, F.

A. Dilla, T. N. Anggraeni, and T.

Firmansyah, “Comparisonal analysis of

MySQL and MongoDB response time

query performance,” Jurnal Informatika

Dan Tekonologi Komputer (JITEK), vol.

2, no. 2, pp. 158-166, 2022.

https://doi.org/10.55606/jitek.v2i2.245

[29] Citus Data Documentation, [Online]:

https://docs.citusdata.com

[30] L. F. Silva and J. V. F. Lima, “An

evaluation of relational and NoSQL

distributed databases on a low-power

https://doi.org/10.21070/pels.v2i2.1296
https://doi.org/10.21070/pels.v2i2.1296
https://doi.org/10.1007/978-981-99-0333-7_7
https://doi.org/10.1007/978-981-99-0333-7_7
https://doi.org/10.3390/computers11020029
https://doi.org/10.3390/computers11020029
https://folk.idi.ntnu.no/baf/eremcis/2022/Group02.pdf
https://folk.idi.ntnu.no/baf/eremcis/2022/Group02.pdf
https://doi.org/10.55606/jitek.v2i2.245

26 Query Completion for Small-Scale Distributed Databases in PostgreSQL and MongoDB

cluster,” J. Supercomput., vol. 79, pp.

13402–13420, 2023.

https://doi.org/10.1007/s11227-023-

05166-7

[31] U. Cubukcu, O. Erdogan, S. Pathak,

S. Sannakkayala, and M. Slot, “Citus:

Distributed PostgreSQL for data-

intensive applications,” in Proc. of the

2021 International Conference on

Management of Data, ACM, 2021,

doi: 10.1145/3448016.3457551.

[32] MongoDB Documentation,

[Online]:

https://www.mongodb.com/docs/man

ual/

[33] T. Taipalus, “Database management

system performance comparisons: A

systematic literature review,” J. Syst.

Softw., vol. 208, no. 111872, 2024,

doi: 10.1016/j.jss.2023.111872.

[34] Transaction Processing Council

Benchmark H (Decision Support)

Standard Specification, [Online]:

https://www.tpc.org/TPC_Documents

_Current_Versions/pdf/TPC-

H_v3.0.1.pdf.

[35] R, “R: A Language and Environment

for Statistical Computing,” R. C. Team,

Producer, & R Foundation for Statistical

Computing, R version 4.4.0, 2024.

Available: https://www.R-project.org.

[36] H. Wickham et al., “Welcome to the

Tidyverse,” J. Open-Source Softw., vol.

4, no. 43, pp. 1–6, 2019, doi:

10.21105/joss.01686.

[37] I. Patil, “Visualizations with statistical

details: The 'ggstatsplot' approach,” J.

Open Source Softw., vol. 6, no. 61, 2021,

doi: 10.21105/joss.03167.

[38] M. Kuhn and J. Silge, Tidy Modeling

with R, Sebastopol, California, USA:

O'Reilly, 2022.

[39] P. Biecek, “Dalex: Explainers for

complex predictive models in R,” J.

Mach. Learn. Res., vol. 19, no. 84, pp.

1–5, 2018.

Marin FOTACHE graduated from the Faculty of Economics at

Alexandru Ioan Cuza University of Iasi, Romania in 1989. He holds a

PhD diploma in Business Information Systems (Business Informatics)

from 2000 and he had gone through all didactic positions since 1990

when he joined the staff of Al. I. Cuza University, from teaching

assistant in 1990, to full professor in 2002. Currently he is professor

within the Department of Accounting, Business Informatics and

Statistics in the Faculty of Economics and Business Administration at

Alexandru Ioan Cuza University. He is the (co)author of books and journal/conference articles

in areas such as SQL, database design, NoSQL, Big Data, Data Engineering and Machine

Learning.

Cătălina BADEA completed her Master’s degree in Data Mining at the

Faculty of Economics and Business Administration, Alexandru Ioan Cuza

University of Iași. Since 2024, she has been enrolled as a PhD student at

the Doctoral School of Economics and Business Administration, focusing

on Business Informatics. Her doctoral research approaches performance

and architectural problems in Big Data platforms, exploring the transition

from Data Lake to Data Lakehouse. Her conference participation includes

RoEduNet: Networking in Education and Research 2024, Globalization

and Higher Education in Economics and Business Administration 2024, and International

Conference on Informatics in Economy (IE 2025). She serves as an associate teaching staff

https://doi.org/10.1007/s11227-023-05166-7
https://doi.org/10.1007/s11227-023-05166-7
https://www.tpc.org/TPC_Documents_Current_Versions/pdf/TPC-H_v3.0.1.pdf
https://www.tpc.org/TPC_Documents_Current_Versions/pdf/TPC-H_v3.0.1.pdf
https://www.tpc.org/TPC_Documents_Current_Versions/pdf/TPC-H_v3.0.1.pdf
https://www.r-project.org/

Database Systems Journal vol. XVI/2025 27

member at Alexandru Ioan Cuza University of Iași, where she conducts laboratory sessions in

database systems. Her research interests focus on Big Data system architectures and the

performance of data processing in business applications.

Marius-Iulian CLUCI graduated from the Faculty of Economics and

Business Administration at Alexandru Ioan Cuza University of Iași,

Romania. He holds a master’s degree in Software Development and

Business Information Systems and currently he is a Ph.D. candidate at

the Doctoral School of Economics and Business Administration. His

research focuses on Big Data systems, the integration of Machine

Learning in Apache Spark, and performance benchmarking of modern

data architectures. He has taught on topics related to Big Data, Machine

Learning, OpenStack, and distributed computing. He works as a Cloud Engineer on Microsoft

Azure, designing scalable data integration and processing solutions. His academic

contributions include papers on TPC-H benchmarking, Spark optimizations, and schema

evolution. His areas of expertise include cloud computing, Apache Spark, Machine Learning,

and data integration.

Codrin-Stefan Esanu graduated from the Faculty of Economics and

Business Administration Iasi, specializing in Business Informatics, and

obtained his Master's degree in Software Development and Business

Information Systems. Currently, he is pursuing a Ph.D. at the Doctoral

School of Economics and Business Administration. Started his career in

the IT Service Management industry at Capgemini, he advanced quickly

towards management roles. Leveraging the solid foundation in managing

critical IT services, he successfully transitioned to a technical DevOps role at Cegeka

Romania. Additionally, he serves as a university associate lecturer at Alexandru Ioan Cuza

University in Iași, teaching courses in databases, Big Data and distributed computing. His

professional expertise includes Linux administration, Scripting, Infrastructure as Code

(Puppet, Ansible), Containers orchestration (OpenShift), GitOps (ArgoCD) and database

systems like PostgreSQL, Citus, and Neo4j.

