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Relational/SQL and document/JSON data stores are competing but also complementary 

technologies in the OLAP (On-Line Analytical Processing) systems. Whereas the traditional 

approaches for performance comparison use the duration of queries performing similar tasks, 

in this paper we compare the performance of two distributed setups deployed on 

PostgreSQL/Citus and MongoDB by focusing only on the query’s successful completion 

within a 10-minute timeout. The TPC-H benchmark database was converted into a 

denormalized JSON schema in MongoDB. An initial set of 296 SQL queries was devised for 

execution in PostgreSQL/Citus and then mapped for execution in MongoDB using 

Aggregation Framework (AF). Query execution success within a 10-minute timeout was 

collected for both PostgreSQL and MongoDB in six scenarios defined by two small-scale data 

factors (0.01 and 0.1 GB) and three different node counts (3, 6, and 9) for data distribution 

and processing. The relationships between the query completion and the query parameters 

were assessed with statistical tests and a series of machine learning techniques. 

Keywords: PostgreSQL, Citus, MongoDB, SQL, Aggregation Framework, OLAP 

performance comparison. 

 

Introduction 

Current data architectures incorporate 

various technologies for data storage and 

processing, such as relational/SQL and 

NoSQL data servers [1][2][3]. In this 

paper, we analyse and compare the 

OLAP [4] performance of PostgreSQL 

and MongoDB on six distributed 

configurations deployed on OpenStack 

[5], by varying the database size and the 

number of data distribution nodes. 

For this purpose, we used the TPC-H 

Benchmark [6] database and tools, to 

populate the TPC-H database tables with 

a specified volume of data. We started 

with the original TPC-H schema, 

devising a module to populate a 

corresponding MongoDB schema by 

transforming (mainly by nesting) the data 

structure. This transformation allows a 

MongoDB collection to integrate data 

originally scattered across two or more 

tables.  

We developed a set of 296 SQL queries (for 

the original TPC-H schema) that vary in 

terms of number of joins, filter clauses, or 

group clauses. Subsequently, this query set 

was translated into MongoDB’s Aggregation 

Framework (MAF) and adapted to the new 

document database structure. In this new 

structure, some of the joins between 

collections become unnecessary, as the data 

is denormalized and stored as nested arrays 

inside documents.  

The queries were run on both PostgreSQL 

and MongoDB setups across six scenarios. 

These scenarios were defined by the 

combination of two small-scale factors (of 

0.01GB and 0.1GB) and three distribution 

architectures with 3, 6, and 9 nodes. A 10-
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minute timeout was imposed for the 

execution of each query. Queries that did 

not complete within 600 seconds were 

canceled. 

The preliminary results on the 

relationship between query completion 

(for both database servers) and the 

database size and the distribution setup 

were presented in [6]. In this paper, we 

examine the relationships between the 

query completion and some parameters 

describing the query complexity; we also 

developed, tuned, and interpreted 

Machine Learning (ML) classification 

models for predicting query completion 

on various predictors about database size, 

distribution setup and query complexity. 

The remaining of this paper is organized 

as follows: section 2 examines the results 

of some previous studies approaching the 

performance comparison of SQL 

(PostgreSQL) and document (MongoDB) 

data stores. Section 3 provides a brief 

overview of the distributed architectures 

of Citus (a distributed PostgreSQL 

solution) and MongoDB. Section 4 

describes the experimental setup, data 

analysis methods and tools used for 

obtaining the results. Results are analyzed 

in section 5. The paper concludes with 

the main findings, pointing out the study's 

main limitations, and some future 

directions for research. 

 

2 Previous studies on OLAP 

performance comparison of SQL and 

NoSQL database servers    

Both PostgreSQL and MongoDB are 

highly popular on the database market [7] 

and a considerable body of literature 

targeted their OLTP (On-Line 

Transaction Processing) and/or OLAP 

performance comparison. Results are far 

from convergent, as seen below. 

In [8] PostgreSQL outperformed 

MongoDB. Güney and Ceylan [9] found 

that MongoDB had certain advantages in 

specific cases, particularly in data sorting 

operations, while PostgreSQL performed 

better in bulk data extraction and more 

complex query operations. Villalobos et al. 

[10] found that PostgreSQL performs more 

efficiently with complex queries involving 

intersection or combination functions, while 

MongoDB is better suited for simpler 

queries involving only filtering of 

descriptive, non-geographic data. In [11] 

MongoDB excelled in managing national 

election data, with consistent execution 

times regardless of operation size. 

PostgreSQL also performed well, with 

memory usage increasing linearly with the 

size of the operation. Also, in [12]  

MongoDB significantly outperformed SQL 

Server in processing e-government data. 

Yedilkhan et al. [13] showed that both 

MongoDB and PostgreSQL are suitable for 

particular use cases and scenarios. The 

comparison was based on performance 

evaluations conducted across multiple 

clusters, including both cloud and on-

premises environments. In [14] MongoDB 

outperformed PostgreSQL in terms of 

latency. Makris et al. [15] concluded that 

PostgreSQL performed better than 

MongoDB when managing spatio–temporal 

data. In [16] results showed that relational 

databases are more efficient than non-

relational databases when executing the 

basic types of database operations (CRUD – 

Create, Read, Update, Delete).  

Tracz and Plechawska-Wójcik [17] analyzed 

the performance of relational and non-

relational databases using MS SQL Server, 

MongoDB, and CouchDB. A total of 30 test 

series were conducted for each database 

server across the scenarios of interest, using 

the following record counts: 500, 1000, 

2000, 5000, and 10000; results revealed that 

SQL Server ranks first, followed by 

MongoDB in the second place, and 

CouchDB as the least efficient of the three. 

In [18] results indicated that NoSQL 

databases are a better alternative to their 

relational counterparts. Setyawan et al. [19] 

found that MongoDB is well-suited for 

handling large volumes of data, while 

MySQL recorded optimal performance for 

queries executed on a smaller scale.  
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Figueiredo et al. [20] showed that 

PostgreSQL manages better data that is 

well structured, due to its robust support 

for complex queries. In their study, a 10 

GB dataset was processed by each 

database server, with three types of 

queries: 1st, 5th and 6th (from the TPC-H 

benchmark query-set) selected for 

performance evaluation. Two testing 

scenarios were employed, one involving 

approximately 750 MB of data inserted 

into PostgreSQL and MongoDB, and 

another with a 10 MB file inserted into 

HarperDB. On the response time, 

PostgreSQL recorded the best database 

performance.  

Sals et al. (2023) [21]   argued that 

MongoDB outperforms MySQL in data 

storage and processing capabilities. 

Moreover, Antas et al. [22] concluded 

that MongoDB has better results for 

almost all large data volume tests; 

similarly, in [23]   MongoDB performed 

better for CRUD operations.  Abukabar et 

al. [24] designed an evaluation 

benchmark and identified that MongoDB 

recorded superior performance in 

handling CRUD operations, while 

MySQL excels in executing stored 

procedures. Matallah et al. [25] found 

that MongoDB recorded smaller 

execution time than MySQL for all types 

of query operations. In [26] the results 

showed that MongoDB had significantly 

higher throughput than both MySQL and 

PostgreSQL, particularly for small 

transaction sizes, indicating that 

MongoDB is a better choice for 

applications which involve heavy writing 

of indexed spatial data.  

Reichardt et al. [27] compared the 

performance of NoSQL data stores, 

relative to their relational/SQL 

counterparts. They found that MongoDB 

is more suitable than MySQL for a wide 

range of dataset sizes. Naufal et al. [28] 

found MongoDB outperforms in the 

Update and Delete operations based on 

runtime differences. 

 

3 Distributed architectures for 

PostgreSQL/Citus and MongoDB. 

Deployment on OpenStack 

Citus is an open-source and easy-to-deploy 

PostgreSQL extension which enhances 

PostgreSQL by distributing the database 

using horizontal scaling and parallel query 

processing [29]. It utilizes multiple 

PostgreSQL instances to distribute both data 

and queries across the nodes (in this paper 

we deployed distributed setups with 3, 6 and 

9 nodes). Thus, it provides efficient 

management of large datasets and high 

query volumes. In a Citus cluster (see Fig. 

1), data is divided into shards and distributed 

across worker nodes. The master node 

handles the metadata for the distributed 

tables, coordinates query execution by 

delegating tasks to worker nodes, and 

aggregates the results. Worker nodes store 

the data shards and execute the queries [30].  

 

Fig. 1. Citus architecture ([29]) 

This architecture enables Citus to uphold the 

robustness and flexibility of PostgreSQL. At 

the same time, it delivers substantial 

performance improvements for OLAP 

workloads [31].  

MongoDB is the most popular NoSQL 

product [7] which proved to be a reliable 

solution in providing database scalability, 

flexibility, and high performance. The 

database uses JSON-like documents with 

flexible schemas, which makes it easier to 

manage various data types and speeds up the 

development process.  

Moreover, it employs a sharding architecture 

(Fig.2) to spread the processing load and 

storage across multiple servers. By 

horizontal scalability, MongoDB can handle 

large volumes of data with good overall 

performance in data processing. Data is split 
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into smaller, more manageable units 

known as shards, which can be hosted on 

separate servers or containers for better 

and easier management. 

 
Fig. 2. MongoDB architecture ([32]) 

MongoDB distributes queries across 

these shards, allowing it to efficiently 

handle large data volumes and high 

traffic loads [32]. The data chunks are 

duplicated among shards to ensure high 

availability. Mongos instances route 

queries and manage data distribution, 

while config servers handle metadata and 

configuration settings. 

MongoDB supports replication through 

replica sets, which further enhances data 

availability and fault tolerance in critical 

systems. Each replica set includes a 

primary node for writes and multiple 

secondary nodes that maintain copies of 

the data, these are in pairs of 3 machines 

in most cases. If failure occurs, one of the 

secondary nodes is automatically 

promoted to primary, ensuring minimal 

downtime and data consistency. 

More details on Citus and MongoDB 

distributed setups are provided in section 

4.3. 

4   The experimental design. Research 

method and tools. 

 

We created an initial set of 296 SQL 

queries (for the TPC-H benchmark 

database) in PostgreSQL and translate 

them into MongoDB Aggregation 

Framework queries on a JSON schema 

with nested arrays in collections (as 

described in section 4.1). The queries 

were executed multiple times on both 

servers, with a 600-second timeout, 

varying the database size (scale factor) 

and the data distribution (the number of 

nodes).  

Whereas most of the previous studies 

presented in section 2 assessed the database 

performance with the query response times 

metric, our research focuses on the 

successful completion of queries within a 

timeout period of 10 minutes. In [6] the 

successful query completion was examined 

in relation to the database server and the 

nodes of data distribution using inferential 

statistics. In this paper we approached a 

series of research questions and sub-

questions, also concerning the query 

successful completion, as follows: 

• RQ1: Is the query completion/success 

associated with the parameters describing 

the query complexity? 

o RQ1a: Is query completion 

associated with the number of joins/lookups 

in the query? 

o RQ1b – Is query completion 

associated with the number of filters 

(predicates for record selection)? 

o RQ1c – Is query completion 

associated with the record grouping? 

o RQ1d – Is query completion 

associated with limiting the number of 

records in the result? 

• RQ2: Can the query successful execution 

be predicted based on database size, 

physical setup and query complexity 

parameters?  

o RQ2a: Do Machine Learning 

classification models reliable predict the 

success of query execution based on the 

predictors related to the data volume, data 

distribution and query complexity? 

o RQ2b: Which are the most 

important variables for the prediction of 

query completion? How their distribution 

influences the query success? 

4.1 Database structure in PostgreSQL and 

MongoDB 

Since our study is focused on the OLAP 

performance [33] of MongoDB and 

PostgreSQL, we relied on the TPC-H 

benchmark database. This benchmark 

evaluates database systems performance by 
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using a series of business-oriented 

queries (which we did not use in this 

paper).  

In PostgreSQL the database followed the 

original TPC-H schema consisting of 

eight tables, as represented in Fig. 3. For 

details on the table attributes and 

constraints, see [34] and [6]. 

 
 

Fig. 3. TPC-H database schema ([34] [6])  

When devising the corresponding 

MongoDB collections, we did not simply 

map the PostgreSQL tables into “flat” 

collections. Instead, we combined some 

tables through nesting and thus we 

incorporate some redundancy into the 

database. The resulting collections were: 

• customer_nation 

• lineitem 

• lineitem_orders  

• lineitem_partsupp  

• part  

• partsupp  

• region 

• supplier_nation. 

Collections with simple names mirror the 

PostgreSQL tables directly, containing a 

straightforward JSON representation with 

the same attributes. The compounded 

collections, identified by names with 

underscores, merge data from two 

PostgreSQL tables. These collections are 

designed to reflect more complex 

relationships by nesting documents and 

arrays. As illustrated in Fig. 4, each 

document in the lineitem_orders 

collection represents an order from the 

orders table which includes (lines 7 to 29 

in Fig. 4) an array of line items associated 

with that order, integrating data from both 

the orders and lineitem tables. 

 

 
Fig. 4. Structure of a document in collection 

lineitem_orders ([6]) 

In PostgreSQL the join is required when 

extracting data from both lineitem and 

orders tables; but in MongoDB's 

Aggregation Framework, this join ($lookup 

function) is not needed because all the 

relevant data is contained within a single 

collection. 

In MongoDB the names of the collections 

which map two PostgreSQL tables are 

formatted with the child table’s name on the 

left side of the underscore and the parent 

table’s name on the right side. In collection 

lineitem_orders, lineitem is the child table 

and table orders is the parent. Each 

document in this collection corresponds to a 

record from the parent table (orders), and 

within each document, there is an array that 

stored all related records from the child table 

(lineitem). 

 

4.2 SQL and Aggregation Framework 

Queries 

The initial 296-query set (written in the 

PostgreSQL dialect of SQL) was devised to 

ensure some variability on the parameters 

describing the query complexity, as 

contained in the SELECT, FROM, WHERE, 

GROUP BY, ORDER BY, LIMIT/FETCH 

and OFFSET/SKIP clauses. The query set 
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was converted into the syntax of the main 

declarative query language in MongoDB 

– the Aggregation Framework, 

considering the new (nested) JSON 

structure. 

Table 1 illustrates two scenarios of 

mapping SQL queries to the Aggregation 

Framework language, considering the 

MongoDB's “nested” structure (using 

arrays). In SQL, the 187th query involves 

a join between customer, orders, lineitem 

and partsupp tables. For the same query in 

MongoDB, Aggregation Framework uses 

the $lookup method to achieve a similar 

effect by joining data from different 

collections. By contrast, the 277th query 

requires join only in SQL, because in 

Aggregation Framework there is no need for 

join since all query data are stored in a 

single collection, customer_nation.  

Table 1. Two examples of query mapping 

Query/ 

Syntax 

  Query content 

 
Q187 

in SQL 

select customer.c_name, orders.o_orderdate, 

lineitem.l_quantity,partsupp.ps_availqty  

from customer 

join orders on customer.c_custkey = orders.o_custkey  

join lineitem on lineitem.l_orderkey = orders.o_orderkey 

join partsupp on lineitem.l_partkey = partsupp.ps_partkey 

where l_quantity < 5 and l_tax > 0.05 and l_discount > 0.08 limit 800; 

Q187 

in AF 

db.customer_nation.aggregate([{$unwind: ""$customer""}, 

{$lookup: {from:""lineitem_orders"", 

localField:""customer.c_custkey"", 

foreignField: ""o_custkey"", as: ""orders_1join""}}, 

{$unwind: ""$orders_1join""}, 

{$lookup: {from: ""lineitem"",localField: ""orders_1join.o_orderkey"", 

foreignField: ""l_orderkey"", as: ""lineitem_2join""}}, 

{$match: {""lineitem_2join.l_quantity"": {$lt: 5}, 

""lineitem_2join.l_tax"": {$gt: 0.05}, 

""lineitem_2join.l_discount"": {$gt: 0.08}}}, 

{$lookup: {from: ""partsupp"",localField: ""lineitem_2join.ps_partkey"", 

foreignField: ""l_partkey"",as: ""partsupp_3join""}}, 

{$project: { _id: 0, c_name:""$customer.c_name"", 

o_orderdate:""$orders_1join.o_orderdate"", l_quantity: 

""$lineitem_2join.l_quantity"", 

ps_availqty: ""$partsupp_3join.ps_availqty""}}, {$limit: 800}]); 

Q277 

in SQL 

select count(c_custkey), n_name  

from customer 

join nation on customer.c_nationkey = nation.n_nationkey 

where c_acctbal > 0 and c_mktsegment = 'FURNITURE' and n_regionkey = 1 

group by n_name; 

Q277 

in AF 

db.customer_nation.aggregate([ 

{$unwind: "$customer"}, 

{$match: {"customer.c_acctbal": { $gt: 0 }}}, {$match: 

{"customer.c_mktsegment": "FURNITURE "}}, {$match: {"n_regionkey": 

1}},{$group: {_id:"$n_name",NumberOfCustomer: { $sum: 1 }}}, 

{$project: {_id: 0, n_name: "$_id",NumberOfCustomer:1}} 

]); 

When translating the SQL queries into 

MongoDB Aggregation Framework 

queries for yielding the equivalent results, 

we strived to maintain simplicity in the 

syntax for both languages. 

4.3 Physical Setup 

The experimental setup was deployed on the 

RaaS-IS platform, which operates as a 

private cloud managed by OpenStack, as 

described in [6]. The RaaS-IS datacentre 



Database Systems Journal vol. XVI/2025  17 

 

architecture includes 20 servers: 3 

controller nodes to ensure high 

availability of OpenStack services, 16 

compute nodes for Virtual Machine and 

container provisioning, and a 

management server responsible for 

MAAS, Juju, LDAP, and network 

management. The storage infrastructure 

uses an HPE 3PAR 8440 SAN with a 

total raw capacity of 760 TB, of which 

550 TB is usable, and includes an 8 TB 

SSD cache for enhanced performance. 

The SAN’s NL-SAS HDDs are set up in 

RAID 5, while the SSD cache uses RAID 

6 to deliver higher performance. The 

compute nodes have dual Intel Xeon 

Gold 6240 CPUs (18 cores, 2.6 GHz 

each), 128 GB of RAM@2933MHz, and 

300 GB SAS drives in RAID 1. Together, 

these provide 1152 virtual cores and 2 TB 

RAM for the RaaS-IS project and 

infrastructure. 

4.3.1 PostgreSQL Citus Cluster Setup 

The Citus cluster was configured and 

partially deployed using the OpenStack 

Heat orchestration module, which allows 

for Infrastructure as Code (IaC) using 

built-in OpenStack tools. The cluster was 

set up on virtual machines within the 

cluster nodes running a custom-

configured Ubuntu Linux 18.04.6 LTS 

(kernel version 4.15.0-213-generic), 

along with TPC-H v3.0 and Citus v11.3. 

To streamline cluster management, 

custom bash scripts were developed to 

enhance monitoring, result retrieval, and 

automated deployment. 

The Citus cluster consisted of 10 

machines, designed to provide distributed 

parallel query execution and scalability 

for analytical workloads. The cluster 

setup was as follows: 

• Coordinator Node (1 machine): 

This node served as the primary entry 

point for queries, distributing them across 

worker nodes while maintaining metadata 

and query routing. 

• Worker Nodes (9 machines): 

These nodes handled data storage and 

parallel execution of queries, improving 

performance for analytical workloads 

4.3.2 MongoDB Sharded Cluster setup 

The MongoDB cluster was configured and 

partially configured using the OpenStack 

Heat orchestration module. This module 

uses built-in OpenStack tools to allow 

Infrastructure as Code (IaC). The MongoDB 

cluster was set up on virtual machines 

within the compute nodes, using a custom-

configured Ubuntu Linux 18.04.6 LTS 

(kernel version 4.15.0-213-generic), TPC-H 

v3.0, and MongoDB v6.0.14. A set of bash 

scripts was developed to improve 

monitoring and configuration for retrieving 

results and automating the cluster setup. 

The MongoDB cluster comprised 13 

machines configured to ensure optimal 

performance and reliability, mirroring a 

typical production environment.  

The servers were organized as follows: 

▪ Router Node (1 machine): This server 

directed client requests to the correct 

shard. 

▪ Config Nodes (3 machines) – these nodes 

managed the cluster's metadata and 

configuration, ensuring smooth operation. 

▪ Shards (9 machines): The data was spread 

across three shards, each with three 

replica sets. Each set included a primary 

node for write operations and two 

secondary nodes for redundancy and high 

availability. The number of shards could 

be adjusted depending on the test 

scenario. 

Each machine was set up with 4 cores, 4GB 

of RAM, and a 200GB storage volume on 

the SAN. 

4.4 Variables (outcomes and predictors) 

Table 2 shows the variables used in the 

analysis. The first three variables define the 

physical setup of each scenario in the 

experiment. Variable success refers to the 

outcome of the query execution (whether it 

was completed within the 10-minute 

timeout). 
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Table 2. Variable description 
Variable Description 

db_server  name of the DBMS 

scale_factor  size of the DBMS 

n_of_nodes  number of nodes used for data distribution 

success  binary variable whose value is TRUE when the query was successfully 

completed within the 10-minute timeout, and FALSE otherwise 

join  number of JOIN clauses (PostgreSQL), equivalent to $lookup 

(MongoDB) 

where  number of WHERE clauses (PostgreSQL), equivalent to $match 

(MongoDB) 

count  number of COUNT clauses (PostgreSQL), equivalent to count: 

(MongoDB) 

group_by  number of GROUP BY clauses (PostgreSQL), equivalent to $group 

(MongoDB) 

having  number of HAVING clauses (PostgreSQL), equivalent to $match 

(MongoDB) 

limit  number of LIMIT clauses (PostgreSQL), equivalent to $limit 

(MongoDB) 

 

The variable names related to the query 

complexity are inspired from the SQL 

syntax, and the second column points to 

the Aggregation Framework equivalent 

feature. 

4.5 Method and tools for data analysis 

For RQ1a-RQ1c the analysis relied on 

classical inferential statisticss. For RQ2a 

and RQ2b we built, tuned and interpreted 

a series of ML classification models 

based on two of the most popular 

classification algorithms, Random Forest 

and Extreme Gradient Boosting 

(XGBoost) algorithms. 

After the query results and parameters 

were collected and integrated, the dataset 

was examined using Exploratory Data 

Analysis. The Chi-square test of 

independence was applied to assess the 

association between nominal variables. 

We employed Random Forest and 

XGBoost to identify the most important 

predictors for the success of query 

execution. 

The dataset was processed and analyzed 

using R programming language [35], 

employing tools from the tidyverse package 

collection [36] along with ggstatsplot [37]. 

The tidyverse suite is a set of R packages 

designed for data manipulation and 

visualization, while ggstatsplot and rstatix 

provide additional functionalities for 

statistical analysis and visualization of 

results. All models were built and tuned with 

the tidymodels ecosystem [38].  

All the Interpretable ML techniques 

(Variable Importance, Partial Dependency 

Profiles, Individual Conditional Expectation, 

and Accumulated Local Effects Profiles) 

were deployed using the DALEX ecosystem 

([39]). 

5  Results and discussion 

All 296 queries were run on both database 

servers across six different scenarios. The 

chart in Fig. 5 illustrates the distribution of 

query parameters, providing a glimpse into 

the queries complexity. 
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Fig. 5. Distribution of queryparameters 

The chart reveals that 33% of the queries 

involved grouping records and 

performing aggregation by counting the 

records within each group, 45% had no 

filters applied, and roughly half of the 

queries imposed a limit on the result size. 

As presented in [6], there is a correlation 

between query completion (within the 10-

minute timeout) and the database server. 

Of the 3552 queries executed across both 

servers in all six scenarios, 315 failed to 

complete. Of these, 309 failed on 

MongoDB, while only six failed on 

PostgreSQL/Citus. Of the 3237 

successful queries, 1770 (55%) were 

executed on Citus, with the remaining 

1467 (45%) completed on MongoDB. 

Also, [6] found that the relationship 

between query completion (within the 10-

minute timeout) and the data distribution 

setup differs between database servers. In 

Citus, the proportion of successful 

queries remains consistent across the 

three data distribution scenarios. 

However, MongoDB shows more 

variability: the 6-node setup had the 

highest failure rate, while the 9-node 

setup performed the best.  

The subsequent series of statistical tests 

concerned the associations between the 

successful query completion and some 

variables describing the query 

complexity. To start with RQ1a: (Is query 

completion associated with the number of 

joins/lookups in the query?), Fig. 6 shows 

the results of the Chi-Square test of 

independence between variables success and 

joins for PostgreSQL/Citus (left) and 

MongoDB (right). 
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Fig. 6. Association query success vs. 

number of joins 

In Citus, successful and unsuccessful queries 

recorded a similar average number of joins 

(1). By contrast, in MongoDB, the 

joins/lookups appear more costly since for 

the completed queries (1467), the average 

number of joins was 0.91, whereas, for the 

canceled queries (309), the average number 

of joins was 1.50. 

For Citus, the Chi-square test of 

independence indicated a p-value below 

0.05 and an effect size (Cramer's V) of 0.07, 
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providing evidence to state that the 

number of joins is significantly linked to 

the successful completion of queries 

within the 10-minute timeout. 

Meanwhile, for MongoDB, the Chi-

square test computed a p-value less than 

0.05 and a Cramer's V effect size of 0.22, 

which offer support to state that the 

number of joins is significantly related 

with the successful completion of queries 

within the 10-minute timeout. 

Regarding RQ1b (Is query completion 

associated with the number of filters 

/predicates for record selection?), Fig.7 

shows the results of the Chi-Square test 

of independence between variables 

success and filters for Citus (left) and 

MongoDB (right). 
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Fig. 7. Association success vs. number of 

filters 

In Citus, for the successful queries 

(1770), the average number of filters was 

1.14 and for the unsuccessful queries (6) 

the average number of filters was 0. In 

MongoDB, successful and unsuccessful 

queries recorded a similar average 

number of filters, ~ 1. 

For Citus, the Chi-square test recorded a 

p-value greater than 0.05 and an effect 

size (Cramer's V) of 0.05, suggesting that 

the number of filters is not associated 

with the successful completion of queries. 

Similarly, for MongoDB, the Chi-square 

computed a p-value smaller than 0.05 and 

an effect size (Cramér's V) of 0.08, 

indicating that the number of predicates is 

not significantly associated with the 

successful completion of queries, just as 

observed in Citus. 

Addressing the next research question, RQ1c 

- Is query completion associated with 

grouping (aggregation) the records?, Fig. 8 

shows the findings of the Chi-Square test of 

independence between the variables success 

and group_by for both Citus (left) and 

MongoDB (right). 

In Citus, the unsuccessful queries (6) 

included those that were executed without 

any record grouping. In the case of 

successful queries (1770), 66% were 

executed without record grouping, whereas 

34% included it. In contrast, MongoDB 

experienced 309 unsuccessful queries, the 

majority of which did not feature record 

grouping, while out of 1467 successful 

queries, only 37% included record grouping. 
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Fig. 8. Association success vs. record 

grouping 

For Citus, the Chi-square test computed a p-

value greater than 0.05 and an effect size 

(Cramer's V) of 0.03, which fail to support a 

significant association between record 

grouping and query completion. Conversely, 

for MongoDB, the Chi-square test of 

independence showed a p-value less than 

0.05 and a higher effect size (0.17), which 

points to a strong association between record 

grouping and query completion. 

Regarding the subsequent research question, 

RQ1d – Is query completion associated with 

fixing a limit of records in the result?, Fig. 9 

presents the outcomes of the Chi-Square test 

of independence between variables success 

and limit for Citus (left) and MongoDB 

(right). 

In Citus, the unsuccessful queries (6) were 
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those executed without limiting the result 

size, whereas for the successful queries 

(1770), more than a half of queries were 

executed without result size limitation. In 

contrast, MongoDB recorded 309 

unsuccessful queries, the majority of 

which did not impose a limit on the result 

size. Among the 1467 successful queries, 

less than a half of the total applied a size 

limitation. 
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Fig. 9. Association of success and 

limiting the result size 

For Citus, the Chi-square test of 

independence revealed a p-value greater 

than 0.05 and an effect size (Cramer's V) 

of 0.03, so limiting the result size seems 

not to be associated with the successful 

completion of queries. Alternatively, for 

MongoDB, the p-value of the test was 

below 0.05 and the effect size (0.17) was 

higher; for this database server, limiting 

the result size seems associated with the 

query completion. 

Next, we examined whether the predictors in 

Table 2 can reliably predict the query 

completion. We built and tuned a series of 

ML classification models, with 

query_completion (variable that recorded the 

query success) as the outcome (target) and 

the remaining variables in Table 2 as the 

predictors. As described in Section 4.5, only 

two classification algorithms were employed 

for this paper, Random Forest (RF) and 

XGBoost. The metric performance for 

selecting the best model was ROC_AUC. 

Best RF performance was recorded for the 

hyper-parameter combination of mtry = 9 

and min_n = 13, whereas for the best hyper-

parameter combination for XGB was 

mtry=7, min_n=5, tree_depth=9, 

learn_rate=0.0618, 

loss_reduction=0.0000000189, and 

sample_size =0.509.  

Fig.10 displays the performance of both 

algorithms on the new data (the test test). RF 

slightly overperformed XGB, with a 

ROC_AUC of 0.968 (relative to 0.965 for 

XGB). Recorded accuracy was higher for 

XGB - 0.950 (relative to 0.945 for RF). 

Consequently, for further estimation of 

predictor’s importance, the RF best model 

was preferred. 
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Fig. 10. Performance of the tuned classification models on the test set 

Fig. 11 displays the permutation-based 

importance of variables as estimated by 

the RF algorithm. The graphical 

representation shows that the variable 

db_server_pg.citus has the highest 

importance, as permuting this variable 

results in the most significant performance 

loss, followed by the variables join, 
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scale_factor and n_of_nodes. Variables 

group_by, having, and count have the 

lowest importance with a minimal impact on 

the model's performance. 
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limit
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Fig. 11. Permutation-based variable importance on RF classification model 

 

The six most influential variables in 

Fig.11 were selected for computing and 

displaying their effects on the average 

prediction of the outcome probability 

(probability of query to be successfully 

completed), using some techniques of 

interpretable ML. Fig. 12 shows three 

metrics describing the predictor’s effect, 

Partial Dependency Profiles (PDP), 

Conditional Dependency Profiles (CDP) and 

Accumulated Local Effects Profiles (ALE). 

n_of_nodes scale_factor where

0.00 0.25 0.50 0.75 1.00 0 1 2 3 0.00 0.25 0.50 0.75 1.00

db_server_pg.citus join limit

4 6 8 0.025 0.050 0.075 0.100 0 1 2 3

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

a
v
e

ra
g
e

 p
re

d
ic

ti
o

n

ALE

CDP

PDP

Partial Dependence Profiles (PDP)
Conditional Dependence Profiles (CDP)

Accumulated Local Effects Profiles (ALE)

Feature Effects for the Selected Random Forest Classification Model

 
Fig. 12. Model explanations for the selected RF classification model. 
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Regarding the db_server_pg.citus 

variable, the average prediction of query 

completion probability appears to be 

positively associated with the use of the 

Citus database server, as indicated by the 

upward trend of the curve. For the join 

variable, the average prediction of query 

completion probability decreases as more 

joins are added in constructing the query. 

Regarding variable limit, setting a limited 

size of records contributes to achieving a 

higher average prediction. As for the 

n_of_nodes variable, employing either 3 

or 9 nodes increase the odds of success 

for query completion. Unexpectedly, the 

influence of the database size 

(scale_factor) does not seem to differ 

between the two levels relatively, which 

can be explained by the small scales of 

0.01 and 0.1 GB used. As for variable 

where, the average prediction of query 

completion increases when additional 

where clauses are added into the query. 

 

6 Conclusion 

Consistent with some of the earlier 

research, our findings indicate that 

distributed PostgreSQL/Citus 

outperforms MongoDB regarding query 

performance for smaller databases, even 

when both systems are subjects of the 

same requirements and physical 

resources. Also, we identified that the 

most critical factor influencing query 

execution is the type of database server, 

followed by the complexity of joins used 

in query construction and the data 

distribution setup. 

The primary limitation of the 

experimental setup is the small database 

size, which, at 0.01 GB and 0.1 GB, is 

modest by OLAP standards. Additional 

limitations include the relatively small 

query set (296 queries), the complexity of 

the queries, and the brief 10-minute 

timeout imposed for query execution.  

Future experiments on the setup should 

involve processing larger datasets and 

employing different data nesting 

structures in MongoDB collections. 

Moreover, increasing the query set size, 

expanding the variability of query 

parameters, and exploring various data 

distribution scenarios could provide more 

comprehensive insights. 

7 Acknowledgment 

Data processing and analysis for this study 

were supported by Competitiveness 

Operational Program Romania under project 

SMIS 124759 - RaaS-IS (Research-as-a-

Service Iasi). 

 

References 

[1] C. Madera and A. Laurent, “The next 

information architecture evolution: the 

data lake wave,” in Proc. 8th Int. Conf. 

on Management of Digital EcoSystems 

(MEDES), 2016, pp. 174-180. doi: 

10.1145/3012071.3012077. 

[2] F. Naregsian, E. Zhu, R. Miller, K. Pu, 

and P. Arocena, “Data Lake 

Management: Challenges and 

Opportunities,” Proc. VLDB Endow., 

vol. 12, no. 12, pp. 1986-1989, 2019. 

doi: 10.14778/3352063.3352116. 

[3] P. Pedreira, O. Erling, K. Karanasos, S. 

Schneider, and W. McKinney, “The 

Composable Data Management System 

Manifesto,” Proc. VLDB Endow., vol. 

16, no. 10, pp. 2679-2685, 2023. doi: 

10.14778/3603581.3603604. 

[4] D. Martinez-Mosquera, “Integrating 

OLAP with NoSQL Databases in Big 

Data Environments: Systematic 

Mapping,” Big Data Cogn. Comput., vol. 

8, no. 6, 2024. 

[5] K. Prabhakar, J. Kurunandan, A. Amjad, 

P. Prabu, and B. Rajkumar, 

“OpenStackDP: A scalable network 

security framework for SDN-based 

OpenStack cloud infrastructure,” J. 

Cloud Comput.: Adv. Syst. Appl., vol. 12, 

no. 1, 2023. doi: 10.1186/s13677-023-

00406-w. 

[6] M. Fotache, C. Badea, M. I. Cluci, C. 

Pinzaru, C. S. Esanu, and O. Rusu, 

“OLAP Performance of Distributed 

PostgreSQL and MongoDB on 



24  Query Completion for Small-Scale Distributed Databases in PostgreSQL and MongoDB 

 

OpenStack. Preliminary Results on 

Smaller Scale Factors,” in Proc. 23rd 

RoEduNet Conf.: Networking in 

Education and Research,2024, doi: 

10. 

1109/RoEduNet64292.2024.1072255

6 

[7] DB Engines Ranking [Online]. 

https://db-engines.com/en/ranking.  

[8] A. Makris, K. Tserpes, G. 

Siliopoulos, D. Zissis, and D. 

Anagnostopoulos, “MongoDB vs 

PostgreSQL: A comparative study on 

performance aspects,” 

Geoinformatica, vol. 25, pp. 243–268, 

2021. doi: 10.1007/s10707-020-

00407-w. 

[9] E. Güney and N. Ceylan, “Response 

Times Comparison of MongoDB and 

PostgreSQL Databases in Specific 

Test Scenarios,” in ICST Institute for 

Computer Sciences, Social 

Informatics and Telecommunications 

Engineering, 2022, pp. 178–188. 

[10] M. T. Villalobos, L. V. Acuna, and 

R. Q. Oviedo, “Comparison of the 

Response Times of MongoDB and 

PostgreSQL According to Type of 

Query in Geographical Databases,” 

Computación y Sistemas, vol. 24, no. 

4, pp. 1461–1469, 2020. 

[11] L. G. Wiseso, M. Imrona, and A. 

Alamsyah, “Performance Analysis of 

Neo4j, MongoDB, and PostgreSQL 

on 2019 National Election Big Data 

Management Database,” in 

International Conference on Science 

in Information Technology, Palu, 

Indonesia, 2020. 

[12] A. Flores, S. Ramírez, R. Toasa, J. 

Vargas, R. U. Barrionuevo, and J. M. 

Lavin, “Performance Evaluation of 

NoSQL and SQL Queries in 

Response Time for the E-

government,” in 2018 International 

Conference on eDemocracy & 

eGovernment (ICEDEG), 2018, pp. 

257–262. doi: 

10.1109/ICEDEG.2018.8372362. 

[13] Y. D. Mukasheva, A. Bissengaliyeva, 

D. Suynullayev, “Performance Analysis 

of Scaling NoSQL vs SQL: A 

Comparative Study of MongoDB, 

Cassandra, and PostgreSQL,” in 2023 

IEEE International Conference on Smart 

Information Systems and Technologies 

(SIST), Astana, Kazakhstan, 2023, pp. 

479–483. doi: 

10.1109/SIST58284.2023.10223568. 

[14] M. M. Eyada, W. Saber, M. M. El 

Genidy, and F. Amer, “Performance 

Evaluation of IoT Data Management 

Using MongoDB Versus MySQL 

Databases in Different Cloud 

Environments,” IEEE Access, vol. 8, pp. 

110656–110668, 2020. doi: 

10.1109/ACCESS.2020.3002164. 

[16] W. Ali, M. U. Shafique, M. A. Majeed, 

and A. Raza, “Comparison between SQL 

and NoSQL databases and their 

relationship with Big Data analytics,” 

Asian Journal of Research in Computer 

Science, vol. 4, no. 2, pp. 1–10, 2019. 

Article no. AJRCOS.51946, ISSN: 2581-

8260. 

[15] A. Makris, K. Tserpes, G. Spiliopoulos, 

and D. Anagnostopoulos, “Performance 

evaluation of MongoDB and 

PostgreSQL for spatio-temporal data,” in 

EDBT: 22nd International Conference 

on Extending Database Technology, 

Lisbon, Portugal, 2019, pp. 1–9. 

[16] R. Čerešňák and M. Kvet, “Comparison 

of query performance in relational and 

non-relational databases,” in Proc. of the 

13th Scientific Conference on 

Sustainable, Modern and Safe Transport 

(TRANSCOM 2019), Novy Smokovec, 

vol. 40, pp. 170–177, May 29–31, 2019. 

doi: 10.1016/j.trpro.2019.07.027. 

[17] P. M. Tracz and M. Plechawska-

Wójcik, “Comparative analysis of the 

performance of selected database 

management system,” Journal of 

Computer Sciences Institute, vol. 31, pp. 

89–96, 2024. doi: 10.35784/jcsi.5927. 

[18] A. M. Kausar and M. Nasar, “SQL 

Versus NoSQL Databases to Assess 

Their Appropriateness for Big Data 

https://db-engines.com/en/ranking


Database Systems Journal vol. XVI/2025  25 

 

Application,” Recent Advances in 

Computer Science and 

Communications, vol. 14, no. 4, 2021, 

doi: 

10.2174/22132759126661910281116

32 

[19] A. B. Setyawan, I. A. Kautsar, and 

N. L. Azizah, “Query Response Time 

Comparison SQL and No SQL for 

Contact Tracing Application,” in 

Proceedings of the 4th Seminar 

Nasional Sains. Procedia of 

Engineering and Life Science, vol. 2, 

no. 2, 2022, doi: 

https://doi.org/10.21070/pels.v2i2.129

6. 

[20] D. Figueiredo, G. Saraiva, J. Rebelo, 

R. Rodrigues, F. Cardoso, C. 

Wanzeller, P. Martins, and M. 

Abbasi, “Performance Evaluation 

Between HarperDB, Mongo DB and 

PostgreSQL,” in Marketing and 

Smart Technologies. ICMarkTech 

2022. Smart Innovation, Systems and 

Technologies, vol. 344. Springer, 

2024. doi: 

https://doi.org/10.1007/978-981-99-

0333-7_7. 

[21] M. Sals, A. Sghir, N. Rafalia, and J. 

Abouchabaka, “Analysis and 

comparison of NoSQL databases with 

relational databases: MongoDB and 

HBase versus MySQL,” International 

Journal on Technical and Physical 

Problems of Engineering (IJTPE), 

vol. 55, no. 15, pp. 155–161, June 

2023, ISSN 2077-3528. 

[22] J. Antas, R. R. Silva, and J. 

Bernardino, “Assessment of SQL and 

NoSQL Systems to Store and Mine 

COVID-19 Data,” Computers, vol. 

11, no. 2, pp. 29, 2022. doi: 

https://doi.org/10.3390/computers110

20029. 

[23] B. Alyasiri, B. Sahi, and N. AL-

Khafaji, “NoSQL: Will it be an 

alternative to a relational database? 

MySQL vs MongoDB comparison,” 

in Proceedings of 2nd International 

Multi-Disciplinary Conference 

Theme: Integrated Sciences and 

Technologies, IMDC-IST 2021, Sakarya, 

EAI, 7-9 September 2021. doi: 

10.4108/eai.7-9-2021.2314925. 

[24] M. Abukabar, S. Abukabar, and U. M. 

Bello, “Analyzing and Designing an 

Evaluation Benchmark for SQL and 

NoSQL Database Systems for Some 

Selected Higher Institution in Zamfara 

State,” International Journal of Science 

for Global Sustainability (IJSGS), vol. 

10, no. 2, p. 63, 2024, doi: 

10.57233/ijsgs.v10i2.644. 

[25] H. Matallah, G. Belalem, and K. 

Bouamrane, “Comparative study 

between the MySQL relational database 

and the MongoDB NoSQL database,” 

International Journal of Software 

Science and Computational Intelligence 

(IJSSCI), vol. 13, no. 3, pp. 38–63, 2021. 

doi: 10.4018/IJSSCI.2021070104. 

[26] C. Axell, E. Schøien, I. L. Thon, L. O. 

Vågene, and L. Tveiten, “Insertion speed 

of indexed spatial data: comparing 

MySQL, PostgreSQL and MongoDB,” 

2022. [Online]: 

https://folk.idi.ntnu.no/baf/eremcis/2022/

Group02.pdf. 

[27] M. Reichardt, M. Gundall, and H. D. 

Schotten, “Benchmarking the operation 

times of NoSQL and MySQL databases 

for Python clients,” in IECON 2021 – 

47th Annual Conference of the IEEE 

Industrial Electronics Society, Toronto, 

Canada, 2021, pp. 1-8, doi: 

10.1109/IECON48115.2021.9589382. 

[28] N. Naufal, S. Nurkhodijah, G. B. 

Anugrah, A. Pratama, M. I. Rabbani, F. 

A. Dilla, T. N. Anggraeni, and T. 

Firmansyah, “Comparisonal analysis of 

MySQL and MongoDB response time 

query performance,” Jurnal Informatika 

Dan Tekonologi Komputer (JITEK), vol. 

2, no. 2, pp. 158-166, 2022. 

https://doi.org/10.55606/jitek.v2i2.245 

[29] Citus Data Documentation, [Online]: 

https://docs.citusdata.com  

[30] L. F. Silva and J. V. F. Lima, “An 

evaluation of relational and NoSQL 

distributed databases on a low-power 

https://doi.org/10.21070/pels.v2i2.1296
https://doi.org/10.21070/pels.v2i2.1296
https://doi.org/10.1007/978-981-99-0333-7_7
https://doi.org/10.1007/978-981-99-0333-7_7
https://doi.org/10.3390/computers11020029
https://doi.org/10.3390/computers11020029
https://folk.idi.ntnu.no/baf/eremcis/2022/Group02.pdf
https://folk.idi.ntnu.no/baf/eremcis/2022/Group02.pdf
https://doi.org/10.55606/jitek.v2i2.245


26  Query Completion for Small-Scale Distributed Databases in PostgreSQL and MongoDB 

 

cluster,” J. Supercomput., vol. 79, pp. 

13402–13420, 2023. 

https://doi.org/10.1007/s11227-023-

05166-7 

[31] U. Cubukcu, O. Erdogan, S. Pathak, 

S. Sannakkayala, and M. Slot, “Citus: 

Distributed PostgreSQL for data-

intensive applications,” in Proc. of the 

2021 International Conference on 

Management of Data, ACM, 2021, 

doi: 10.1145/3448016.3457551. 

[32] MongoDB Documentation, 

[Online]: 

https://www.mongodb.com/docs/man

ual/  

[33] T. Taipalus, “Database management 

system performance comparisons: A 

systematic literature review,” J. Syst. 

Softw., vol. 208, no. 111872, 2024, 

doi: 10.1016/j.jss.2023.111872. 

[34] Transaction Processing Council 

Benchmark H (Decision Support) 

Standard Specification, [Online]: 

https://www.tpc.org/TPC_Documents

_Current_Versions/pdf/TPC-

H_v3.0.1.pdf. 

[35] R, “R: A Language and Environment 

for Statistical Computing,” R. C. Team, 

Producer, & R Foundation for Statistical 

Computing, R version 4.4.0, 2024. 

Available: https://www.R-project.org. 

[36] H. Wickham et al., “Welcome to the 

Tidyverse,” J. Open-Source Softw., vol. 

4, no. 43, pp. 1–6, 2019, doi: 

10.21105/joss.01686. 

[37] I. Patil, “Visualizations with statistical 

details: The 'ggstatsplot' approach,” J. 

Open Source Softw., vol. 6, no. 61, 2021, 

doi: 10.21105/joss.03167. 

[38] M. Kuhn and J. Silge, Tidy Modeling 

with R, Sebastopol, California, USA: 

O'Reilly, 2022. 

[39] P. Biecek, “Dalex: Explainers for 

complex predictive models in R,” J. 

Mach. Learn. Res., vol. 19, no. 84, pp. 

1–5, 2018. 

 

 

Marin FOTACHE graduated from the Faculty of Economics at 

Alexandru Ioan Cuza University of Iasi, Romania in 1989. He holds a 

PhD diploma in Business Information Systems (Business Informatics) 

from 2000 and he had gone through all didactic positions since 1990 

when he joined the staff of Al. I. Cuza University, from teaching 

assistant in 1990, to full professor in 2002. Currently he is professor 

within the Department of Accounting, Business Informatics and 

Statistics in the Faculty of Economics and Business Administration at 

Alexandru Ioan Cuza University. He is the (co)author of books and journal/conference articles 

in areas such as SQL, database design, NoSQL, Big Data, Data Engineering and Machine 

Learning.  

 

Cătălina BADEA completed her Master’s degree in Data Mining at the 

Faculty of Economics and Business Administration, Alexandru Ioan Cuza 

University of Iași. Since 2024, she has been enrolled as a PhD student at 

the Doctoral School of Economics and Business Administration, focusing 

on Business Informatics. Her doctoral research approaches performance 

and architectural problems in Big Data platforms, exploring the transition 

from Data Lake to Data Lakehouse. Her conference participation includes 

RoEduNet: Networking in Education and Research 2024, Globalization 

and Higher Education in Economics and Business Administration 2024, and International 

Conference on Informatics in Economy (IE 2025). She serves as an associate teaching staff 

https://doi.org/10.1007/s11227-023-05166-7
https://doi.org/10.1007/s11227-023-05166-7
https://www.tpc.org/TPC_Documents_Current_Versions/pdf/TPC-H_v3.0.1.pdf
https://www.tpc.org/TPC_Documents_Current_Versions/pdf/TPC-H_v3.0.1.pdf
https://www.tpc.org/TPC_Documents_Current_Versions/pdf/TPC-H_v3.0.1.pdf
https://www.r-project.org/


Database Systems Journal vol. XVI/2025  27 

 

member at Alexandru Ioan Cuza University of Iași, where she conducts laboratory sessions in 

database systems. Her research interests focus on Big Data system architectures and the 

performance of data processing in business applications.  

 

Marius-Iulian CLUCI graduated from the Faculty of Economics and 

Business Administration at Alexandru Ioan Cuza University of Iași, 

Romania. He holds a master’s degree in Software Development and 

Business Information Systems and currently he is a Ph.D. candidate at 

the Doctoral School of Economics and Business Administration. His 

research focuses on Big Data systems, the integration of Machine 

Learning in Apache Spark, and performance benchmarking of modern 

data architectures. He has taught on topics related to Big Data, Machine 

Learning, OpenStack, and distributed computing. He works as a Cloud Engineer on Microsoft 

Azure, designing scalable data integration and processing solutions. His academic 

contributions include papers on TPC-H benchmarking, Spark optimizations, and schema 

evolution. His areas of expertise include cloud computing, Apache Spark, Machine Learning, 

and data integration. 

 

Codrin-Stefan Esanu graduated from the Faculty of Economics and 

Business Administration Iasi, specializing in Business Informatics, and 

obtained his Master's degree in Software Development and Business 

Information Systems. Currently, he is pursuing a Ph.D. at the Doctoral 

School of Economics and Business Administration. Started his career in 

the IT Service Management industry at Capgemini, he advanced quickly 

towards management roles. Leveraging the solid foundation in managing 

critical IT services, he successfully transitioned to a technical DevOps role at Cegeka 

Romania. Additionally, he serves as a university associate lecturer at Alexandru Ioan Cuza 

University in Iași, teaching courses in databases, Big Data and distributed computing. His 

professional expertise includes Linux administration, Scripting, Infrastructure as Code 

(Puppet, Ansible), Containers orchestration (OpenShift), GitOps (ArgoCD) and database 

systems like PostgreSQL, Citus, and Neo4j. 

 

 


