
32 String Aggregation Techniques in Oracle

String Aggregation Techniques in Oracle
ListAgg – Details, Limitations, and Alternatives

Cristian DUMITRESCU

IBM Romania
mail.cristian.dumitrescu@gmail.com

This paper proposes several ways to overcome the ORA-01489 result of string concatenation
is too long error in early versions of Oracle Database (before 12c). Each proposed
alternative is presented with pros and cons and may be applied only in specific cases,
depending on the requirement or cause.
Keywords: Relational Databases, Oracle, ListAgg, ORA-01489, User-Defined Functions

Introduction
When working with databases, the

aggregation of character fields is a
common need in the development of
views and reports.
To meet these requirements, Oracle
provides a convenient solution through
the ListAgg function.
As the lifetime support for Oracle 11g
has ended in 2020, most companies are
looking to migrate to a newer version [1].
However, the 11g version is still widely
used.
The paper aims to summarize the options
that the database developer has at its
disposal to overcome the 4000-character
limit imposed on the ListAgg function in
the Oracle 11g version.

2. The evolution of the built-in ListAgg
function

ListAgg was first introduced in the Oracle
world in version 11gR2.
ListAgg aggregates the values of multiple
rows into a single grouping. The rows are,
thereby, “denormalized” in a single
concatenation of values, optionally
delimited by a comma, thus generating a csv
(comma-separated-value) result. Similar to
other built-in Oracle functions, ListAgg can
be used as an aggregate function (along with
the “group by” clause), or as an analytical
function (along with the “over” and
“partition by” clauses).
ListAgg is most often used in conjunction
with character attributes, although the
function can receive other data types as
input.
Another favorable feature of the function is
the ability to sort concatenated elements
within a group.

Fig. 1. ListAgg syntax [2]

Note: All SQL queries used in this paper
will run on Oracle’s well-known HR
schema.

1

mailto:mail.cristian.dumitrescu@gmail.com

Database Systems Journal Vol. XII/2021 33

select r.region_name,
 LISTAGG(c.country_name,'; ') WITHIN GROUP (ORDER BY c.country_name)
region_countries
 from regions r
 join countries c on r.region_id = c.region_id
 group by r.region_name;

Fig. 2. ListAgg example in aggregate mode

select c.*,
 LISTAGG(c.country_id,';') WITHIN GROUP (order by null) over
(partition by region_id) COUNTRIES_IN_REGION
 from countries c
where c.region_id = 2;

Fig. 3. ListAgg example in analytical mode

The optional delimiter should be
carefully chosen because in the output it
can be confused with a part of the field
being concatenated. Best practice dictates
choosing a special character that is not
present in the aggregated fields.
The result of the function is a varchar2,
limited to 4000 characters.

Before the 11g version, Oracle had no direct
mechanism that allowed multiple values of
the same column to be displayed on a single
row in the output. In a post on his blog,
Donald Burlescon presents some solutions
to this problem: using the XMLAgg function
(Oracle 9i) and using the
SYS_CONNECT_BY_PATH operator [3],
[4].

select r.region_name
 ,rtrim(xmlagg(xmlelement(e, c.country_name || ';') ORDER BY
c.country_name).extract ('//text()'), ';') region_countries_XMLAGG
 from regions r
 join countries c on r.region_id = c.region_id
 group by r.region_name;

Fig. 4. ListAgg alternative – String concatenation with XMLAgg

select region_name,
 substr(SYS_CONNECT_BY_PATH(country_name, ','),2) name_list

34 String Aggregation Techniques in Oracle

 from (select r.region_name,
 c.country_name,
 count(*) OVER (partition by r.region_name) cnt,
 ROW_NUMBER () OVER (partition by r.region_name order by
c.country_name) seq
 from regions r
 join countries c on r.region_id = c.region_id where
r.region_name is not null)
 where seq = cnt
 start with seq = 1
connect by prior seq + 1 = seq
 and prior region_name = region_name;

Fig. 5. ListAgg alternative – String concatenation with SYS_CONNECT_BY_PATH

In the event that the function exceeds the
4000 characters limit, the following
runtime error occurs:
ORA-01489: result of string
concatenation is too long

In Oracle 12c, ListAgg has received an
upgrade through which this limitation can be
elegantly overcome - the ON OVERFLOW
clause.

 with my_query as (select level no
 from dual connect by level <10000)
select LISTAGG(no,'; ' on overflow truncate) WITHIN GROUP (order by null)
as no_list
 from my_query;

Fig. 6. ListAgg with ON OVERFLOW clause

The query above would generate an error
if we deleted or commented on the "on
overflow truncate" clause.
If the string aggregation output exceeds
4000 characters, the function truncates
the result before this threshold, notifying
the user with a customizable message (the
example above uses the standard option
of “...”) [5].
Starting with the Oracle 19c version, the
function receives new improvements: The
“within group” clause becomes optional,
and the concatenation can be performed

for distinct values, by using ListAgg and
DISTINCT together [6].

3. Avoiding ListAgg’s Overflow Error
Runtime Errors such as ORA-01489 are
difficult to detect during development
because the syntax itself is correct, the error
is actually caused by the volume of the data.
For example, a view that uses this function
can be developed in a test environment with
a small volume of data and will not generate
this error until it is introduced in the
production database. Deleting or restricting

Database Systems Journal Vol. XII/2021 35

the data so that the function falls within
the range dictated by the threshold is
certainly not a solution. Several options
will be explored, along with pros and
cons depending on how ListAgg is used.
Newer versions of Oracle provide
multiple solutions to this common
problem:

3.1 Replacing ListAgg with XMLAgg

By performing this operation, the view in
question will no longer produce a runtime

error. This solution should be applied with
caution, as the data type of the result
changes from varchar2 to clob. If the view
is subsequently used by various reporting or
ETL tools, they may reject such a field.
In situations where returning the entire result
is mandatory, you can choose this option.

3.2 Extending the varchar2 limit from 4000

up to 32767 characters, by setting
MAX_STRING_SIZE initialization
parameter to EXTENDED.

create table test_large_varchar (col1 varchar2(30000));

Fig. 7. Creating a table with a varchar2 field of more than 4000 characters

Admin rights are required to apply this
method. The database must also be in
Upgrade mode.
This option does not directly solve the
current issue, but it can prove to be a
decent solution if the developer needs to

store such aggregation in a table within a
non-clob field.

3.3 Replacing ListAgg with Substring,

To_Char, XML_Agg

 with my_query as (select level no from dual connect by level <10000)
select length(t.no_list) xml_length,
 length(to_char(substr(t.no_list,1,4000))) truncated_char_length,
 to_char(substr(t.no_list,1,4000)) truncated_list
from (
select rtrim(xmlagg(xmlelement(e, no || ';') ORDER BY null).extract
('//text()').getclobval(), ';') as no_list
 from my_query) t;

Fig. 8. Replicating on overflow truncate clause of ListAgg by using a combination of

Substring, To_Char, and XML_Agg

With this method, the output is first
truncated if the string aggregation exceeds
4000 characters. The result is then
transformed from clob to character data
type.

36 String Aggregation Techniques in Oracle

Note: XMLAgg can return the result in
both clob or character data types, using
getclobval() or getstringval(). In the
above query, using getstringval() is not
an option because it would generate an
error similar to the one we were trying to
avoid.
This option can be chosen in situations
where keeping the character data type
prevails over a complete string
aggregation output.

3.4 Creating new User-Defined

Aggregate Functions

Starting with Oracle 9i, developers can
create custom Aggregate Functions.
Keith Laker, Oracle’s Senior Principal
Product Manager, details such an
example of a user-defined aggregate
function in his blog post [7]. The same
topic is also addressed on the famous IT
blogs https://www.stackoverflow.com
and AskTom [8].

According to Oracle [9], User-defined
aggregate functions are used in SQL
DML statements, just like Oracle's own
built-in aggregates. Once such functions
are registered with the server, Oracle
simply invokes the aggregation routines
that you supplied instead of the native
ones. User-defined aggregates can be
implemented using ODCIAggregate
interface routines.

You can create a user-defined aggregate
function by implementing a set of
routines as methods within an object
type, so the implementation can be in any
Oracle-supported language for type
methods, such as PL/SQL, C/C++, or
Java. When the object type is defined and
the routines are implemented in the type

body, you use the CREATE FUNCTION
statement to create the aggregate function.

Each of the four ODCIAggregate routines
required to define a user-defined aggregate
function codifies one of the internal
operations that any aggregate function
performs, namely:

• Initialize - Initializes the
computation;

• Iterate – processes each successive
input value;

• Merge – combines two aggregation
contexts and returns a single
aggregation context;

• Terminate – computes the result.

Fig. 9. ODCIAggregate routines [9]

Keith Laker’s proposed user-defined
function is developed in the following
manner:

An initial object is created with the purpose
of storing the results from the iterate stage.
In this example, the object is created as a
table of varchar2(25), but the size can be up
to 4000 bytes, even clob, depending on the
way the final aggregate function is being
used. For example, if we plan on
concatenating first names and last names,
this object should have the size of the two
columns combined.

CREATE OR REPLACE TYPE string_varray AS TABLE OF VARCHAR2(25);

CREATE OR REPLACE TYPE t_string_agg AS OBJECT
(

https://www.stackoverflow.com/

Database Systems Journal Vol. XII/2021 37

 a_string_data string_varray,
 STATIC FUNCTION ODCIAggregateInitialize(sctx IN OUT t_string_agg) RETURN
NUMBER,
 MEMBER FUNCTION ODCIAggregateIterate(self IN OUT t_string_agg, value IN
VARCHAR2) RETURN NUMBER,
 MEMBER FUNCTION ODCIAggregateTerminate(self IN t_string_agg, returnValue
OUT VARCHAR2, flags IN NUMBER) RETURN NUMBER,
 MEMBER FUNCTION ODCIAggregateMerge(self IN OUT t_string_agg, ctx2 IN
t_string_agg) RETURN NUMBER
);

CREATE OR REPLACE TYPE BODY t_string_agg IS
 STATIC FUNCTION ODCIAggregateInitialize(sctx IN OUT t_string_agg) RETURN
NUMBER IS
 BEGIN
 sctx := t_string_agg(string_varray());
 RETURN ODCIConst.Success;
 END;
MEMBER FUNCTION ODCIAggregateIterate(self IN OUT t_string_agg, value IN
VARCHAR2) RETURN NUMBER IS
 BEGIN
 a_string_data.extend;
 a_string_data(a_string_data.count) := value;
 RETURN ODCIConst.Success;
 END;
MEMBER FUNCTION ODCIAggregateTerminate(self IN t_string_agg, returnValue
OUT VARCHAR2, flags IN NUMBER) RETURN NUMBER IS
 l_data varchar2(32000);
 ctx_len NUMBER;
 string_max NUMBER;
BEGIN
 ctx_len := 0;
 string_max := 4000;
 FOR x IN (SELECT DISTINCT column_value FROM TABLE(a_string_data) order
by 1)
 LOOP
 IF LENGTH(l_data || ',' || x.column_value) <= string_max THEN
 l_data := l_data || ',' || x.column_value;
 ELSE
 ctx_len := ctx_len + 1;
 END IF;
 END LOOP;
 IF ctx_len > 1 THEN
 l_data := l_data || '...(' || ctx_len||')';
 END IF;
 returnValue := LTRIM(l_data, ',');
 RETURN ODCIConst.Success;
 END;
MEMBER FUNCTION ODCIAggregateMerge(self IN OUT t_string_agg, ctx2 IN
t_string_agg) RETURN NUMBER IS
 BEGIN
 FOR i IN 1 .. ctx2.a_string_data.count
 LOOP
 a_string_data.EXTEND;
 a_string_data(a_string_data.COUNT) := ctx2.a_string_data(i);
 END LOOP;
 RETURN ODCIConst.Success;
 END;
END;

38 String Aggregation Techniques in Oracle

The last step is creating a function – the actual ListAgg alternative, which receives a string as
input and calls the string-processing object described above.

CREATE OR REPLACE FUNCTION string_agg (p_input VARCHAR2)
RETURN VARCHAR2
PARALLEL_ENABLE AGGREGATE USING t_string_agg;

We should observe that in
ODCIAggregateTerminate routine,
string_max is set to 4000. This
basically reproduces the ON OVERFLOW
TRUNCATE functionality of ListAgg’s
12c version.
The advantage of such an approach is that
the function can directly answer the
problem we face with a custom solution.
The initial object can be as large or as
small as we need it to be. The overflow

truncate can occur at any given threshold.
This versatile approach can be further used
in any given SQL Statement, no matter its
complexity.
One disadvantage could be that the separator
is embedded within the code. The developer
cannot change it as easily as with ListAgg.
Let us observe the user-defined aggregate in
action (in the below example, string_max
is set to 100):

select e.department_id,
 string_agg(e.first_name|| ' ' || e.last_name) as full_name
from employees e group by e.department_id;

Fig. 10. ListAgg functionality replicated with a user-defined function

4. Conclusions
ListAgg currently remains a powerful
string aggregation alternative.
Throughout their career, developers
usually work with multiple versions of
databases, which is why a review on
ListAgg evolution, limitations, and string
processing alternatives may prove useful.

References
[1] https://support.oracle.com/

knowledge/Oracle%20Cloud/206836
8_1.html

[2] https://docs.oracle.com/
[3] http://www.dba-

oracle.com/t_oracle_listagg_function.
htm

[4] https://oracle-

base.com/articles/misc/string-
aggregation-techniques#wm_concat

[5] https://blog.dbi-services.com/oracle-
12cr2-sql-new-feature-listagg-overflow/

[6] https://rogertroller.com/
2020/01/07/oracle-19c-listagg-
enhancement/

[7] https://blogs.oracle.com/
datawarehousing/exploring-the-
interfaces-for-user-defined-aggregates

[8] https://asktom.oracle.com/pls/apex/f
?p=100:11:0::::p11_question_id:156377
44429336

[9] https://docs.oracle.com/cd/
B10501_01/appdev.920/a96595/dci11ag
g.htm#1004615

https://support.oracle.com/%0bknowledge/Oracle%20Cloud/2068368_1.html
https://support.oracle.com/%0bknowledge/Oracle%20Cloud/2068368_1.html
https://support.oracle.com/%0bknowledge/Oracle%20Cloud/2068368_1.html
https://docs.oracle.com/
http://www.dba-oracle.com/t_oracle_listagg_function.htm
http://www.dba-oracle.com/t_oracle_listagg_function.htm
http://www.dba-oracle.com/t_oracle_listagg_function.htm
https://oracle-base.com/articles/misc/string-aggregation-techniques#wm_concat
https://oracle-base.com/articles/misc/string-aggregation-techniques#wm_concat
https://oracle-base.com/articles/misc/string-aggregation-techniques#wm_concat
https://blog.dbi-services.com/oracle-12cr2-sql-new-feature-listagg-overflow/
https://blog.dbi-services.com/oracle-12cr2-sql-new-feature-listagg-overflow/
https://rogertroller.com/%0b2020/01/07/oracle-19c-listagg-enhancement/
https://rogertroller.com/%0b2020/01/07/oracle-19c-listagg-enhancement/
https://rogertroller.com/%0b2020/01/07/oracle-19c-listagg-enhancement/
https://blogs.oracle.com/%0bdatawarehousing/exploring-the-interfaces-for-user-defined-aggregates
https://blogs.oracle.com/%0bdatawarehousing/exploring-the-interfaces-for-user-defined-aggregates
https://blogs.oracle.com/%0bdatawarehousing/exploring-the-interfaces-for-user-defined-aggregates
https://asktom.oracle.com/pls/apex/f%0b?p=100:11:0::::p11_question_id:15637744429336
https://asktom.oracle.com/pls/apex/f%0b?p=100:11:0::::p11_question_id:15637744429336
https://asktom.oracle.com/pls/apex/f%0b?p=100:11:0::::p11_question_id:15637744429336
https://docs.oracle.com/cd/%0bB10501_01/appdev.920/a96595/dci11agg.htm#1004615
https://docs.oracle.com/cd/%0bB10501_01/appdev.920/a96595/dci11agg.htm#1004615
https://docs.oracle.com/cd/%0bB10501_01/appdev.920/a96595/dci11agg.htm#1004615

Database Systems Journal Vol. XII/2021 39

Cristian DUMITRESCU graduated from the Faculty of Cybernetics,
Statistics and Economic Informatics of the Bucharest University of Economic
Studies in 2010. Cristian works as a Data Engineer for IBM Romania and has
7 years of experience in working with Oracle Databases. His area of expertise
includes Relational Databases, SQL, PL/SQL, OLTP, OLAP, and Reporting.

	String Aggregation Techniques in Oracle
	Cristian DUMITRESCU

