
Database Systems Journal, vol. XI/2020 3

Testing Approaches for an Electricity Market Simulator

Anca Ioana ANDREESCU, Ana Ramona BOLOGA

The Bucharest University of Economic Studies, Romania

Anca.andreescu@ie.ase.ro, Ramona.bologa@ie.ase.ro

Software testing methodologies represent different approaches and techniques to ensure that

a particular software application is fully tested. This paper addresses the functional testing of

a software system for simulating electricity markets. The tested functionalities are briefly

presented and the main testing techniques compatible with this type of system are analyzed.

The purpose is to recommend the best combination of techniques recommended in this case

and to present results obtained by applying them to the simulator.

Keywords: functional testing technics, behavioral testing, electricity market, simulator

Introduction

Software testing is one of the main

stages of the development cycle of an IT

system, vital for software quality assurance.

According to IEEE, software testing can be

defined as: “the process of exercising or

evaluating a system or system component

by manual or automatic means to verify that

it satisfies the requirements” [1]. Often,

however, software testing involves

considerable costs and time, hence the

continuous concern for reducing costs and

streamlining the testing activity.

The test cases can be generated based on

the results obtained in the analysis and

design stages of the computer system or

they can be obtained based on the code

developed in the implementation stage.

This work will focus on functional testing

and the main techniques recommended to

perform a more complete and efficient

testing of a computer system developed to

simulate participation in electricity markets.

The paper is structured in four parts, as

follows: section 2 - a brief presentation of

software testing approaches for complex

systems; section 3 - the main functionalities

a wholesale electricity market simulator for

which test cases have to be prepared;

section 4 – presents examples of various

testing techniques that may be applied to

the simulator, including their advantages

and disadvantages; section 4 is dedicated to

results analysis, discussions and

conclusions.

2 Testing in complex software systems

Software testing methodologies represent

the different approaches and ways to ensure

that a particular software application is fully

tested. Software testing methodologies must

include a broad spectrum of elements, from

testing individual module units, testing the

integration of an entire system, to

specialized forms of testing such as security

and performance [2]. According to the types

of requirements of a computer system, two

general levels can be identified at the level

of testing: functional testing and non-

functional testing, each having a series of

components presented in Fig.1.

Fig. 1. Types of testing for software systems

[2]

Functional testing (black box) is performed

using the functional specifications provided

by the client or by using the analysis and

design specifications, such as use cases.

Non-functional testing (white box) involves

testing the system in accordance with non-

functional requirements, which usually

involves measuring / testing the system

1

Unit

testing

Integration

testing

System

testing
Acceptance

testing

Functional testing

Performance

testing

Security

testing

Usability

testing

Compatibility

testing

Non-functional testing

mailto:Anca.andreescu@ie.ase.ro
mailto:Ramona.bologa@ie.ase.ro

4 Testing Approaches for an Energy Market Simulator

according to the defined technical qualities,

for example vulnerability, scalability or

usability. Traditionally, software testing

considers only static views of the code and

does not sufficiently address the dynamic

behavior of the computer system. But,

during this stage, the testing of an entire

system should be performed, based on its

specifications, considering the specific

dynamics and interdependencies.

If in the first case we are talking about

structural testing, based on the code

resulting in the coding stage, in the second

case we are talking about behavioral testing

based on the requirements and design

specifications. The use of the models

obtained during the analysis and design

stages can lead to a reduction of the costs

through reuse and the improvement of the

verification and validation. In addition, the

test activity can be started in parallel with

the writing of the code, as soon as the

modeling results are available.

For example, in the context of object-

oriented modeling using UML (Unified

Modeling Language), use cases and

corresponding sequence and collaboration

diagrams, class diagrams, can be used as

sources of information relevant to the test

cases. The analysis of the use case scenarios

offers a complete understanding of the

system, but, being an informal description,

it is difficult to generate automatic test

cases. Therefore, an active research

direction is the formalization of

specifications to make it possible to

automatically generate test cases.

Ryser proposed a method of creating test

cases starting from use cases, scenarios and

use case diagrams called SCENT approach

[3]. Use cases and scenarios are

transformed into semi-formal representation

state charts that are further used for test

case generation. But the sequence

dependencies between use cases was first

approached by Briand and Labiche [4], who

used an activity diagram of use cases for

each actor in the system. Later, Touseef and

Zahid [5] used the same approach for

representing sequential dependencies

between use cases, but added some

execution contracts for use case scenarios in

form of logical expressions.

Use cases and sequence diagrams were used

by Swain et al. [6] to generate test cases,

taking into consideration the dependency

sequences between use cases in form of a

graph.

3 Main functionalities of the Wholesale

Electricity Market Simulator

The system for simulating the participation

of a producer / supplier / trader / consumer

of electricity in different types of markets

aims to identify how decisions regarding the

price or quantities offered can influence

profit optimization. It is a complex system,

with numerous restrictions and operating

rules, but also with important

interdependencies of the decisions made on

the different markets.

In this section we will describe the

simulator’s functionalities regarding the

transactions on the following markets ([7],

[8], [9], [10] and [11]): Bilateral Wholesale

Markets (BWM), Day Ahead Market

(DAM), Intra-Day Market (IDM), Balancing

Market (BM) and Ancillary Services Market

(ASM). Also, before simulating the market

trading, several basic configurations are

needed to be made in a General Settings

Module.

For the implementation of the simulator, a

series of classes have been identified that

contain the entities participating in its

construction. The identified classes

represent abstractions of the objects that

interact within the system. A distinction can

be made between two classes of classes:

basic classes, which include objects

characterized by dynamic behaviour and

independent classes, which have been used

to retrieve data from other external systems.

The class diagram in Figure 2 includes the

independent classes found at the simulator

level.

Database Systems Journal, vol. XI/2020 5

Fig. 2. Class diagram for the identified

independent classes

A brief description of the information

included in the independent classes is

presented below:

• BWM_LE_HISTORY- Average hourly

prices for deficit and surplus for the

Balancing Market, contract type LE;

• BWM _NC_HISTORY - Average hourly

prices for deficit and surplus for the

Balancing Market, NC contract type (non-

compliant);

• DAM_HISTORY - Historical energy

hourly prices for DAM;

• RESERVE_HISTORY - Historical hourly

prices for ancillary services;

• BM_HISTORY - Average hourly prices

for deficit and surplus for the Balancing

Market;

• PHOTOVOLTAIC_EG_PRODUCTION -

Data for estimating photovoltaic energy

production;

• WIND_TURBINES_EG_PRODUCTION

Data for estimating wind energy

production.

In order to model the dynamic aspects of the

trading simulator, UML interaction

diagrams were constructed. These diagrams

are made up of a set of objects and the

relationships between them, including

messages that the objects send from one to

the other. There are two types of interaction

diagrams: the sequence diagram and the

communication diagram. The two diagrams

are semantically equivalent and can be

transformed from one another. The sequence

diagrams illustrate the messages exchanged

between the actors / users of the system and

the computer system, through the interfaces

that it offers. We have started with simple

versions of the message sequences, and later

we detailed the involved objects.

Figure 3 shows the detailed sequence

diagram for configuring the basic options in

the General Settings Module. This was built

by detailing the messages exchanged

between the objects participating in the

creation of the scenario. The scenario that

underlies this sequence diagram is the

following: the user chooses one of the

predefined options to select which type of

business is simulated: producer, supplier,

trader or consumer. If it is a producer, it will

choose whether it is type or controllable

(thermo, hydro, nuclear) or uncontrollable

(photovoltaic, wind). Subsequently, the user

will enter the volume of electricity available

for trading. The total available power per

hour will be introduced, meaning the

installed power, if it is a producer or the

power required for trading or buying if it is a

supplier, consumer or trader. Then, a

technological minimum must be entered.

The user must choose from a predefined list

the periods for the simulation. Then, the

month of the year with which the simulation

begins will be chosen. The options will be

saved, and the offer will be created.

6 Testing Approaches for an Energy Market Simulator

Fig. 3. Detailed sequence diagram for General Settings configurations

The sequence diagram in the figure 4

describe the simulation of trading on

BWM and it is based on the following

scenario: the user selects one of the

options for sale or purchase on the BWM.

Then, the user chooses from a predefined

list of standard products offered by the

Romanian Gas and Electricity Market

Operator (OPCOM) the one for which the

simulation of the transaction is desired, in

accordance with the time-related settings

in the general module. Once the selection

has been made, a validation will be

performed and will block the products in

the list that have overlaps with the selected

product. Subsequently, the user selects

information specific to the chosen product,

such as semester, quarter, month or year.

Will be available for access only the

products that have an equal or a shorter

period than the chosen period for simulation

in the general module. Then, the user enters

the desired hourly power to be contracted.

This is validated in accordance with the

settings in the general module or with other

transactions performed on other markets.

The cost of imbalances must be introduced,

as a percentage of revenues, implicitly with

Database Systems Journal, vol. XI/2020 7

the value of 10%. This default percentage

can be changed. The total hourly power

offered on the BWM is calculated and

displayed for the chosen option (sale /

purchase). Data is saved.

 Fig. 4. Sequence diagram for trading simulation on BWM

DAM transactions can be simulated using

the following scenario: the user selects

one of the options for sale or purchase on

the DAM and the desired month for

simulation. The number of months for

which the simulation is performed must

be less than the period specified in the

General Settings Module and correspond to

the periods of a possible simulation

performed on the BWM. The available

hourly power is displayed by correlating the

settings in the general module with any sales

8 Testing Approaches for an Energy Market Simulator

on the BWM and with the primary

regulation reserve (for Producers). For

information purposes, a historical

monthly average price for the chosen

month is displayed. Also, a correction

coefficient for the selected month will be

displayed. It has a default value of 25%

and can be modified by the user. Average

monthly per hour prices will be displayed

for the period chosen by the user. These

can be modified. The hourly power that is

to be traded must be introduced. For

selling, it must be checked that the

maximum available power is not

exceeded. The data is saved, and the total

offer is displayed.

Trading simulation on ASM is based on

the process described in the following.

The producer selects the desired month

for simulation. It is considered that the

number of months for which the

simulation is performed must be less than

the period specified in the General

Settings Module and correspond to the

periods of a possible simulation

performed on BWM or DAM. For this

scenario, a historical price is displayed

and used. It can be modified by the

producer performing the simulation. The

available power for reserves is completed

and validated based on the total power

offered in the general settings module and

of the power contracted on BWM and

DAM. If desired, the correction

coefficient can be updated. Following

data is saved. The simulator will calculate

and display the total offer on ASM.

The next scenario was considered for

trading simulation on BM: the producer

selects the desired month for simulation.

The number of months for which the

simulation is performed must be less than

the period specified in the General

Settings Module and correspond to the

periods of a possible simulation

performed on the BWM or DAM.

Historical monthly average prices per

hour for deficit and surplus will be

displayed. Historical prices can be

modified by the user. The power offered

by the producer on this market is obtained as

the difference between the total power

completed in the general settings module

and the quantities contracted by

participating on other types of markets.

Automatically a correction percentage is

applied to the estimated revenues or

expenses for the simulated period. By

default, the risk level is 30% and can be

changed. Data for the current month and the

offer are saved. Total updated offer is

displayed.

4 Recommended testing techniques

The main components underlying the testing

of computer systems are the techniques,

activities, instruments and the controlled

environment. Of the mentioned components,

we will focus on the techniques used in the

testing process. The techniques of designing

the test cases can be divided into three

categories [12]:

a) Test techniques based on specifications or

black box;

b) Testing techniques based on structure or

white box;

c) Testing techniques based on experience.

In the following, several types of

specification-based techniques (black box)

are presented in detail. These tests derive

from specifying the desired behavior of the

system. It starts from the basic idea that

specifications should define what a system

should do, not how behavioral specifications

should be implemented.

4.1 Partitioning into equivalence classes

The documents containing the system

requirements normally indicate the rules that

the system must follow. There may be rules

that imply belonging to a certain range of

values or there may be rules of the type if ...

then. For example, Rule A might be "if n is

less than one, then this is executed." Rule B

could be "if n is greater than or equal to one

and less than or equal to twelve, execute

this".

We consider the rules for the values that a

field can store for one month of the year.

Thus, we have the following situations:

Database Systems Journal, vol. XI/2020 9

a) if the month is less than one, the value

is not valid;

b) if the month is between one and

twelve, it is admissible and the value can

be accepted;

c) if the month is greater than twelve, the

value is invalid and an error is displayed.

The entire infinite range of integers that

could be introduced into the system for

the value of the month must fit into one

of these three criteria, one of these

categories or classes: a) smaller than one;

b) between one and twelve; c) greater

than twelve. If a value is selected from

each number class and we use it as a test

case, it can be said that all three rules

have been covered. Also, we can say that

each value belongs to an equivalence

class, hence the name of the technique.

There are three criteria that must be met

when creating equivalence classes [13]:

• Coverage: each possible input value must

belong to one of the equivalence classes.

• Disjoint character: the same input value

cannot belong to more than one equivalence

class.

• Representation: If, by using as input value

a particular member of an equivalence class,

the execution results in an error state, then

the same state can be detected using as input

value any other member of the class.

Partitioning into equivalence classes applies

to all types of values, whether they are

continuous or discrete. Using the scenario

with the months of the year presented above,

the following table can be defined for the

partitions of inputs and outputs:

Table 1: Partitioning into equivalence classes for inputs and outputs
Rule Input partition Output partition

Month less than 1, display “Invalid,

value too small”

Month <1 Invalid, too small

Month between 1 and 12, display

“Valid”

(Month>=1, Month

<=12)

Valid

Month greater than 12, display “Invalid,

value is too big”

Month >12 Invalid, too big

4.2 Analysis of limit values

The errors tend to be grouped around the

limit values. The assumption underlying

this type of testing is that developers

often omit special cases, represented by

the "borders" of equivalence classes.

Using the previous example, we can see

that in order to be valid, the month will

have to fall within the "valid limit values"

from 1 to 12. Also, for the month to be

invalid, it must be outside these valid

limits. The principle of testing with the

limit value analysis is to use the limit

value itself and another value as close to

it as possible, to be able to reach any part

of the limit, using the precision that was

applied to the partition. In the example

presented, 0,1,2 are valid values for lower

limit testing, while 11,12,13 are valid values

for upper limit testing.

We can say that the limit values analysis is a

particular case of the test method based on

equivalence classes, which is centered on

exploring the limit cases. Instead of

choosing an arbitrary representative of the

equivalence class for testing, the method

involves choosing a "boundary" element,

which represents a particular case. A good

way to represent valid and invalid partitions

and boundaries is in a table with the

following structure:

Table 2. Example of partitions and limit values
Testing conditions Valid partitions Invalid partitions Valid limits Invalid limits

Average hourly

price

10 RON –100

RON

<10 RON

>100 RON

10 RON

100 RON

10,001 RON

99,999 RON

9,999 RON

100,001 RON

10 Testing Approaches for an Energy Market Simulator

4.3 Testing based on decision tables

Equivalence class partitioning techniques

and boundary value analysis are often

applied to specific situations or inputs.

However, if different combinations of

inputs lead to certain actions, this may be

more difficult to show using partitioning

into equivalence classes and analyzing

limit values, techniques that tend to be

more focused on the user interface. The

other two test techniques based on

specifications, decision tables and

transitions between states are more

focused on business logic or business

rules.

A decision table is an effective way of

dealing with combinations of elements

(for example, input data). This technique

is sometimes referred to as the cause-

and-effect table. Decision tables provide

a systematic way of specifying complex

business rules, which is useful for both

developers and test engineers. Decision

tables can be used in designing test cases,

whether or not they are described in the

specifications, as it helps test engineers

explore the effects of different input

combinations as well as other system

states that need to correctly implement

business rules. Decision tables help

systematically select efficient test cases

and can have the beneficial side effect of

finding problems and ambiguities in

specifications. It is a technique that works

well in combination with partitioning into

equivalence classes. The combination of

the conditions explored can be a

combination of equivalence partitions.

In using the decision tables for designing

the tests, the first step is to identify a

function or subsystem that has a behavior

that reacts according to a combination of

inputs or events. After identifying the

elements to be combined, they can be

placed in a table that shows all the

combinations of True and False for each

of the conditions. The next step is to

identify the correct result for each

combination. Each combination of inputs

and outputs is found in the specialized

literature as a rule. From a testing

perspective, a rule is a test case.

The outputs can be represented either in the

form of an expected result (a single output

line), or by listing each type of action that

can be considered a result and specifying

whether or not it will be performed

according to the values of the input

conditions. We illustrate below the two

variants for specifying the results for the

decision tables. For the first case, we create

test cases for the purpose of verifying a

login form, having the structure in the figure

below.

Fig. 5. Login form

The constrained decision table for testing the

functionality of the login form is presented

in Table 4. The entry conditions verify that

the user and password data have been

entered.

Table 3. Decision table for testing the login

form
Input CT1 CT2 CT3 CT4

User Yes Yes No No

Pass-

word

Yes No Yes No

Login Yes Yes Nu No

Expec

ted

output

Syste

m

respon

se

Error

messa

ge

Error

messa

ge

Error

messa

ge

The following decision table was

constrained to test the functionality of the

electricity market simulator, having as input

conditions the type of market that is

simulated trading and the type of user. The

expected results model the possibility of

selling / increasing or buying / decreasing in

one of the markets depending on the type of

user.

Database Systems Journal, vol. XI/2020 11

Table 4. Decision table for testing the

trading possibilities in the market

simulator

Input 1 2 3 4 5 6

Producer Yes No No No Yes No

Supplier No Yes No No No Yes

Trader No No Yes No No No

Consume

r

No No No Yes No No

BWM Yes Yes Yes Yes No No

DAM No No No No Yes Yes

BM No No No No No No

ASM No No No No No No

Selling/

Growth

Yes Yes Yes No Yes Yes

Buying/

Drop

Yes Yes Yes Yes Yes Yes

4.4 Testing based on the transition

between states

Testing based on the transition between

states is used when a certain aspect of the

system can be described in the form of

what is called a "finite state machine".

This shows that the system can be in a

(finite) number of different states, and the

transitions from one state to another are

determined by the rules of the "machine".

This model is based on both the system

and the test cases.

Any system where a different output can

be obtained for the same input, depending

on what happened before, is a finite state

system. Such a system can be described

in the form of UML diagrams of state

machines. A model that highlights the

transition between states has four basic

parts:

• The states in which the system can be

located (for example, closed or open)

• Transitions from one state to another

(transactions are allowed only between

certain states)

• The events that generate the transitions

• Actions resulting from transactions.

It is noteworthy that, in any state, an

event may cause a single action, while the

same event, from a different state, may

cause another action or the transition to

another state.

The test conditions can be derived from the

diagram that models the machine with states

in different ways. Each state can be

considered a testing condition, as is each

transition. The following table describes a

general model for a state table that can be

used to test a system in which finite states

can be identified and modeled.

Table 5. General model for a table of states

 1st test

case

2nd test

case

3rd test

case

4th test

case

1st

transition

2nd

transition

3rd

transition

4th

transition

S
T

A
T

E
S

A

state

B

state

C

state

D

state

One of the advantages of the technique

based on the transitions between states is

that models can be built at the desired levels

of detail and abstraction to verify the

different critical or less critical aspects of

the system.

4.5 Use case-based testing

Use case-based testing is a technique that

helps identify test cases for verifying the

entire system from a transactional

perspective. A use case is a description of a

particular way of using the system by an

actor. Each use case describes the

interactions that the actor has with the

system to perform a specific task (or at least

a measurable result for the user). In general,

actors are people, but there may be other

systems. Use cases are a sequence of steps

that describe the interactions between the

actor and the system.

The use cases are defined in terms of the

actor and from his perspective, not of the

computer system. I often use business

language and terms, rather than technical

12 Testing Approaches for an Energy Market Simulator

terms. They serve as a basis for

developing test cases for system testing

and acceptance testing. Use cases may

reveal integration defects, i.e. defects

caused by the incorrect interaction

between different components.

Each use case usually has a main

scenario, as well as other additional

alternatives (covering, for example,

special cases or exceptional conditions).

Each use case must specify any

preconditions that must be met to operate

the use case. The use cases must also

specify the postconditions that can be

observed and a description of the final

state of the system, after the use case has

been successfully executed.

The system requirements can be specified as

a set of use cases. This approach can

facilitate the involvement of users in the

process of collecting and defining the

requirements, but also in the testing

process.The following table shows the

partial variant of a use case template that

documents the simulation of the sale on the

BWM market for the manufacturer. The

basic and alternative flows are highlighted,

with the highlighting of the actors involved.

These will serve as input into the process of

testing the scenarios involved in this use

case.

Table 6. Partial description of a use case highlighting the actors involved

Name Simulation sale on the BWM market for the manufacturer

Preconditions The manufacturer specific activity settings from the general module have

been introduced

Postconditions The manufacturer has simulated its offer on the market of bilateral contracts

for the period specified in the general module. The simulation data on the

BWM were saved.

Basic flow

P: Producer

S: System

1. P: Select the option to sell on the BWM market.

2. P: Choose from a predefined list of products (OPCOM) the one for

which you want to simulate the transaction, according to the time

settings in the general module.

3. S: Check overlaps with the selected product.

4. P: Selects information specific to the chosen product, such as semester,

quarter, month or year. (Only available products that have a shorter or a

shorter period with the chosen period for simulation in the general

module can be accessed.)

5. P: Enter the desired hourly power to be contracted.

6. S: The hourly power desired to be contracted will be validated in order

not to exceed the declarant availability in the general module.

7. S: A historical monthly average price for the selected product will be

displayed

8. S: The cost of imbalances is completed, as a percentage of the receipts,

implicitly with the value of 10%.

9. S: Calculate and display the total hourly power offered on BWM for

sale.

10. S: Saves data for BWM simulation.

Alternative

flows

3A: There are overlaps with the selected product - S: The products in the

list that have overlaps with the selected product will be blocked.

Database Systems Journal, vol. XI/2020 13

6A: The hourly power exceeds the declarant available in the general

module- S: An error message is displayed and the hourly power is re-

entered

7A: The manufacturer wants to change the price - P: Changes the historical

price

7B: There is a negotiated hourly price for a product - S: it will

automatically fill in and use the negotiated price

8A: Manufacturer wants to change the cost of imbalances - P: Change

percentage of imbalances

As an example of creating and using

dependency charts, we selected only the

participation of the energy producer on

two electricity markets: BWM and DAM.

The scenarios in which the Producer is

the actor are:

(1) Basic configurations in the General

module;

(2) Select product for BWM transaction;

(3) Fill in the hourly power to be

contracted for the listed products;

(4) Fill in the price of the imbalances as a

percentage of the receipts;

(5) Estimate the correction coefficient

according to the weather forecast;

(6) Fill in the offer for each time interval

of each month.

The scenarios in which the

System is the actor are:

(10) Import historical data about

products;

(11) Retrieve the predefined list of

products and details;

(12) Calculate and display Average

historical price per hour for the

selected product;

(13) Hourly power validation;

(14) Block those products from the list

that have overlaps with the selected

product;

(15) Estimate the total contracted

quantity and update the availability;

(16) Retrieve the historical DAM data;

(17) Calculate monthly average of the

historical price;

(18) Validate offer per interval and

per month.

(19) Total offer amount update

Dependency charts are very useful in

testing, as they support derivation of

additional test cases and ensure that

dependencies between scenarios are tested.

Dependency chart in Figure 6 uses the

notations presented in Table 7.

Table 7. The notations for dependency

charts [3].

Symbol Explanation

 Unrestricted scenario

General dependency

 Sequence

 Alternative

 Iteration

 Real time

dependencies

Structuring

constructs

condition

1..15

14 Testing Approaches for an Energy Market Simulator

Fig. 6. A dependency chart for the electricity market simulator

Table 8. Examples of test case identification

Test preparation Producer has entered basic configurations in the General Module

ID Scenarios Expected result Description

1.1 (11), (2), (14) User can not be able to add the

selected product to his offer

User select products on BWM

that overlaps the previous

selected product(s)

1.2 (11), (2), (14),

(12), (3), (13)

An error message is displayed

and the hourly power has to be

re-entered

Hourly power exceeds the

declarant available in the

general module

1.3 (16), (17), (5),

(6), (18)

An error message is displayed

and per interval and per has to

be re-entered

Offer per interval and per moth

on DAM exceeds the declarant

available in the general module

Use cases present their scenarios in the

form of all possible paths for the specific

functionality of the computer system.

Therefore, all these scenarios must be

verified for the actual implementation of

the testing process. By crossing the

dependency chart, the necessary test

paths can be identified and the use cases

efficiently generated. Table 8 presents

some examples of test cases based on

scenario dependencies, where scenarios are

indicated using their identification numbers

between brackets.

5 Conclusions and future work

As our first development phases used UML

for modeling, we find best fitted UML-

Based Approach to System Testing, with its

obvious advantages.

Each of the functional testing techniques

presented above are frequently applied, each

Database Systems Journal, vol. XI/2020 15

with its own recommendations. Often

these are used in a complementary

manner to benefit from their specific

advantages. In the case of a complex

system, such as the system for simulating

the participation in the electricity markets

presented in this paper, where there are

numerous and interdependent restrictions

between the different functionalities, the

test based on use cases will be the most

appropriate technique.

6 Acknowledgment

This paper presents the scientific results

of the project “Intelligent system for

trading on wholesale electricity market”

(SMARTRADE), co-financed by the

European Regional Development Fund

(ERDF), through the Competitiveness

Operational Programme (COP) 2014-

2020, priority axis 1 – Research,

technological development and

innovation (RD&I) to support economic

competitiveness and business

development, Action 1.1.4 - Attracting

high-level personnel from abroad in order

to enhance the RD capacity, contract ID

P_37_418, no. 62/05.09.2016,

beneficiary: The Bucharest University of

Economic Studies

References:

[1] N. Kosindrdecha, and J. Daengdej. A

test case generation process and

technique Journal of Software

Engineering, 2010;

[2] Inflecta, Software Testing

Methodologies - Learn The Methods

& Tools, March 2018,

https://www.inflectra.com/ideas/topic/

testing-methodologies.aspx, last

accessed on 13.12.2019;

[3] J. Ryser, and M. Glinz, A scenario-

based approach to validating and

testing software systems using

statecharts., Proc. 12th International

Conference on Software and Systems

Engineering and their Applications,

1999;

[4] L. Briand and Y. Labiche. A UML-based

approach to system testing, Software

Quality Engineering Laboratory,

Systems and Computer Engineering,

Innovations in Systems and Software

Engineering, Springer. pp. 12-24, 2002;

[5] M. Touseef and Z. H. Qaisar. A use case

driven approach for system level testing,

International Journal of Computer

Science Issue. Vol. 9, 2012;

[6] S.K. Swain, D. P. Mohapatra, and R.

Mall, Test case generation based on use

case and sequence diagram,

International Journal of Software

Engineering”, 2010;

[7] Guideline on Electricity Balancing.

Retrieved January 27, 2020, from

https://www.entsoe.eu/network_codes/e

b/ ;

[8] Guideline on Electricity Transmission

System Operation. Retrieved January

27, 2020, from

https://www.entsoe.eu/network_codes/s

ys-ops/ ;

[9] Regulation regarding intra-day market

operation of Romanian Energy

Regulatory Authority (RERA).

Retrieved January 27, 2020, from

https://www.anre.ro/ro/legislatie/docum

ente-de-discutie-ee1/proceduri-oper-

regl-comerciale/regulamentul-de-

organizare-si-functionare-a-pietei-

intrazilnice-de-energie-

electrica1387366406 ;

[10] Regulation regarding day ahead market

operation of Romanian Energy

Regulatory Authority (RERA).

Retrieved January 27, 2020, from

https://www.anre.ro/ro/energie-

electrica/legislatie/documente-de-

discutie-ee/proceduri-oper-regl-

comerciale/regulament-de-organizare-

si-functionare-a-pietei-pentru-ziua-

urmatoare-de-energie-electrica-cu-

respectarea-mecanismului-de-cuplare-

prin-pret-a-pietelor&page=1 ;

[11] Regulation regarding negocitated

contracts of Romanian Energy

Regulatory Authority (RERA).

Retrieved January 27, 2020, from

https://www.inflectra.com/ideas/topic/testing-methodologies.aspx
https://www.inflectra.com/ideas/topic/testing-methodologies.aspx
https://www.entsoe.eu/network_codes/eb/
https://www.entsoe.eu/network_codes/eb/
https://www.entsoe.eu/network_codes/sys-ops/
https://www.entsoe.eu/network_codes/sys-ops/
https://www.anre.ro/ro/legislatie/documente-de-discutie-ee1/proceduri-oper-regl-comerciale/regulamentul-de-organizare-si-functionare-a-pietei-intrazilnice-de-energie-electrica1387366406
https://www.anre.ro/ro/legislatie/documente-de-discutie-ee1/proceduri-oper-regl-comerciale/regulamentul-de-organizare-si-functionare-a-pietei-intrazilnice-de-energie-electrica1387366406
https://www.anre.ro/ro/legislatie/documente-de-discutie-ee1/proceduri-oper-regl-comerciale/regulamentul-de-organizare-si-functionare-a-pietei-intrazilnice-de-energie-electrica1387366406
https://www.anre.ro/ro/legislatie/documente-de-discutie-ee1/proceduri-oper-regl-comerciale/regulamentul-de-organizare-si-functionare-a-pietei-intrazilnice-de-energie-electrica1387366406
https://www.anre.ro/ro/legislatie/documente-de-discutie-ee1/proceduri-oper-regl-comerciale/regulamentul-de-organizare-si-functionare-a-pietei-intrazilnice-de-energie-electrica1387366406
https://www.anre.ro/ro/legislatie/documente-de-discutie-ee1/proceduri-oper-regl-comerciale/regulamentul-de-organizare-si-functionare-a-pietei-intrazilnice-de-energie-electrica1387366406
https://www.anre.ro/ro/energie-electrica/legislatie/documente-de-discutie-ee/proceduri-oper-regl-comerciale/regulament-de-organizare-si-functionare-a-pietei-pentru-ziua-urmatoare-de-energie-electrica-cu-respectarea-mecanismului-de-cuplare-prin-pret-a-pietelor&page=1
https://www.anre.ro/ro/energie-electrica/legislatie/documente-de-discutie-ee/proceduri-oper-regl-comerciale/regulament-de-organizare-si-functionare-a-pietei-pentru-ziua-urmatoare-de-energie-electrica-cu-respectarea-mecanismului-de-cuplare-prin-pret-a-pietelor&page=1
https://www.anre.ro/ro/energie-electrica/legislatie/documente-de-discutie-ee/proceduri-oper-regl-comerciale/regulament-de-organizare-si-functionare-a-pietei-pentru-ziua-urmatoare-de-energie-electrica-cu-respectarea-mecanismului-de-cuplare-prin-pret-a-pietelor&page=1
https://www.anre.ro/ro/energie-electrica/legislatie/documente-de-discutie-ee/proceduri-oper-regl-comerciale/regulament-de-organizare-si-functionare-a-pietei-pentru-ziua-urmatoare-de-energie-electrica-cu-respectarea-mecanismului-de-cuplare-prin-pret-a-pietelor&page=1
https://www.anre.ro/ro/energie-electrica/legislatie/documente-de-discutie-ee/proceduri-oper-regl-comerciale/regulament-de-organizare-si-functionare-a-pietei-pentru-ziua-urmatoare-de-energie-electrica-cu-respectarea-mecanismului-de-cuplare-prin-pret-a-pietelor&page=1
https://www.anre.ro/ro/energie-electrica/legislatie/documente-de-discutie-ee/proceduri-oper-regl-comerciale/regulament-de-organizare-si-functionare-a-pietei-pentru-ziua-urmatoare-de-energie-electrica-cu-respectarea-mecanismului-de-cuplare-prin-pret-a-pietelor&page=1
https://www.anre.ro/ro/energie-electrica/legislatie/documente-de-discutie-ee/proceduri-oper-regl-comerciale/regulament-de-organizare-si-functionare-a-pietei-pentru-ziua-urmatoare-de-energie-electrica-cu-respectarea-mecanismului-de-cuplare-prin-pret-a-pietelor&page=1
https://www.anre.ro/ro/energie-electrica/legislatie/documente-de-discutie-ee/proceduri-oper-regl-comerciale/regulament-de-organizare-si-functionare-a-pietei-pentru-ziua-urmatoare-de-energie-electrica-cu-respectarea-mecanismului-de-cuplare-prin-pret-a-pietelor&page=1

16 A Big Data Modeling Methodology for NoSQL Document Databases

https://www.anre.ro/ro/legislatie/doc

umente-de-discutie-ee1/proceduri-

oper-regl-comerciale/regulament-

privind-modalitatile-de-incheiere-a-

contractelor-bilaterale-de-energie-

electrica-prin-licitatie-extinsa-si-

negociere-continua-si-prin-

contracte-de-procesare ;

[12] C. Damodar, Manual Testing Help,

2012, Retrieved January 27, 2020,

from

https://www.softwaretestinghelp.com/ma

nual-testing-help-ebook-free-

download/comment-page-1/;

[13] D. Graham, E. van Veenendaal, I.

Evans, R. Black, Foundations of

Software Testing: ISTQB

Certification 1st Edition, Cengage

Learning Business Press, 2006.

Anca Ioana Andreescu graduated from the Faculty of Cybernetics,

Statistics and Economic Informatics of the Academy of Economic Studies

in 2001. She got the title of doctor in economy in the specialty economic

informatics in 2009. At present she is an associate professor in the

Department of Economic Informatics and Cybernetics of the Bucharest

University of Economic Studies. Her domains of work are: informatics

systems and business analytics programming languages.

Bologa Ana Ramona graduated from the Faculty of Cybernetics,

Statistics and Economic Informatics of the Academy of Economic Studies

in 1999. She got the title of doctor in economy in the specialty economic

informatics in 2007. At present she is a professor in the Department of

Economic Informatics and Cybernetics of the Bucharest University of

Economic Studies. Her domains of work are: informatics

https://www.anre.ro/ro/legislatie/documente-de-discutie-ee1/proceduri-oper-regl-comerciale/regulament-privind-modalitatile-de-incheiere-a-contractelor-bilaterale-de-energie-electrica-prin-licitatie-extinsa-si-negociere-continua-si-prin-contracte-de-procesare
https://www.anre.ro/ro/legislatie/documente-de-discutie-ee1/proceduri-oper-regl-comerciale/regulament-privind-modalitatile-de-incheiere-a-contractelor-bilaterale-de-energie-electrica-prin-licitatie-extinsa-si-negociere-continua-si-prin-contracte-de-procesare
https://www.anre.ro/ro/legislatie/documente-de-discutie-ee1/proceduri-oper-regl-comerciale/regulament-privind-modalitatile-de-incheiere-a-contractelor-bilaterale-de-energie-electrica-prin-licitatie-extinsa-si-negociere-continua-si-prin-contracte-de-procesare
https://www.anre.ro/ro/legislatie/documente-de-discutie-ee1/proceduri-oper-regl-comerciale/regulament-privind-modalitatile-de-incheiere-a-contractelor-bilaterale-de-energie-electrica-prin-licitatie-extinsa-si-negociere-continua-si-prin-contracte-de-procesare
https://www.anre.ro/ro/legislatie/documente-de-discutie-ee1/proceduri-oper-regl-comerciale/regulament-privind-modalitatile-de-incheiere-a-contractelor-bilaterale-de-energie-electrica-prin-licitatie-extinsa-si-negociere-continua-si-prin-contracte-de-procesare
https://www.anre.ro/ro/legislatie/documente-de-discutie-ee1/proceduri-oper-regl-comerciale/regulament-privind-modalitatile-de-incheiere-a-contractelor-bilaterale-de-energie-electrica-prin-licitatie-extinsa-si-negociere-continua-si-prin-contracte-de-procesare
https://www.anre.ro/ro/legislatie/documente-de-discutie-ee1/proceduri-oper-regl-comerciale/regulament-privind-modalitatile-de-incheiere-a-contractelor-bilaterale-de-energie-electrica-prin-licitatie-extinsa-si-negociere-continua-si-prin-contracte-de-procesare
https://www.anre.ro/ro/legislatie/documente-de-discutie-ee1/proceduri-oper-regl-comerciale/regulament-privind-modalitatile-de-incheiere-a-contractelor-bilaterale-de-energie-electrica-prin-licitatie-extinsa-si-negociere-continua-si-prin-contracte-de-procesare
https://www.softwaretestinghelp.com/manual-testing-help-ebook-free-download/comment-page-1/
https://www.softwaretestinghelp.com/manual-testing-help-ebook-free-download/comment-page-1/
https://www.softwaretestinghelp.com/manual-testing-help-ebook-free-download/comment-page-1/
https://www.amazon.com/s/ref=dp_byline_sr_book_1?ie=UTF8&field-author=Dorothy+Graham&text=Dorothy+Graham&sort=relevancerank&search-alias=books
https://www.amazon.com/s/ref=dp_byline_sr_book_2?ie=UTF8&field-author=Erik+van+Veenendaal&text=Erik+van+Veenendaal&sort=relevancerank&search-alias=books
https://www.amazon.com/s/ref=dp_byline_sr_book_3?ie=UTF8&field-author=Isabel+Evans&text=Isabel+Evans&sort=relevancerank&search-alias=books
https://www.amazon.com/s/ref=dp_byline_sr_book_3?ie=UTF8&field-author=Isabel+Evans&text=Isabel+Evans&sort=relevancerank&search-alias=books
https://www.amazon.com/s/ref=dp_byline_sr_book_4?ie=UTF8&field-author=Rex+Black&text=Rex+Black&sort=relevancerank&search-alias=books

