
Database Systems Journal, vol. XI/2020 3

Usage of IoT in automation routine processes

Mircescu Cornel

The Bucharest University of Economic Studies, Romania

mircescucornel18@stud.ase.ro

Internet of Things or IoT is a representation of the automatic processes by integrating

processors, sensors and data collections through a huge amount of processing techniques. The

contribution of IoT in technology is significant, offering revolutionary changes in a big amount

of industries. [1]

Actually, these devices became so powerful that they can work with data in real-time, doing

machine learning and artificial intelligence. In big words, a single processor got the frequency

up to 2.4 GHz, with integrated Wi-Fi and many connectors, for the connection with sensors,

being capable of simultaneously working with all of them, depending of the back-end efficiency

programming.

Initially, the IoT devices were programmable only by the Arduino IDE, which is based on C++.

After some time, languages like Python and C# opened their support by creating or opening

open-source projects for libraries to work with them, processors being recognized as a

programmable mini PC. USB was the only solution for code upload, the IDE doing the

compilation and the transfer, then the project could just work with a source of electricity (for

smaller projects, a powerbank could be enough). The programming language Python evolved

and they released, through a open-source project, OTA (Over The Air) upload, which means the

project will need just the usual electricity source and Wi-Fi, no more physical connection to the

PC.

Keywords: iot, big data, database, programming, protocol, sensor, module, upload.

Introduction

Arduino is a brand which is formed

with hardware (processors) and

software (IDE) components, where

anyone can build automation projects. Most

libraries from the IDE are open-source, so

the users are able to copy and alter the code

as they like. Besides the platform, Arduino

got a lot of processors and modules, at low-

moderate cost, for every type of project

needed. Almost all processors got

attachments, for a small fee, which can

extend their capabilities, like: Wi-Fi, GSM,

storage shields.

Speaking of the power of a single processor,

the Arduino can stand as a server with ease,

being even able to work with the data

received from the client. The sensors will

complete the board, meaning there will be

data received from the IoT device; they can

also be analogical or digital, Arduino being

able to handle both with specific ports,

controlling the voltage it drives through the

sensors, careful enough not to burn them.

Some analogical sensors will need physical

intervention, because they usually have

buttons.

Fig. 1 Arduino UNO Board

1

mailto:mircescucornel18@stud.ase.ro

4 Usage of IoT in automation routine processes

2. Software application for routine

processes

The project have the following components:

• Application in the Arduino IDE: for

decision control for every sensor and

module, offering analysis data by

inserting it into the SQL Server

database. Arduino hardware is meant to

give LOW and HIGH signals to the

output modules and to read data

measured by the input sensors.

When the data comes in critical values, the

C# client will be instantly contacting the

user via e-mail, showing a page with the

values. For this to be done, a SMTP server

will be contacted, in our case, Google.

Speaking of network, the processor will be

the kernel of the effective processes upon

the plants, having the highest priority and

access at the point of taking decisions. In

this platform, we will use TCP model for

transmission of data, where we can create a

2-way communication between the server

(Arduino) and the client (C# app). The client

app will be uploaded on the processor, being

ready for execution, even when there is no

physical access to the PC. It will only need a

power supply and Wi-Fi connection.

In the Arduino IDE, the graphical user

interface will be 0, because it will be only

used to transmit data to the client. C# will

take all the variable passed through the TCP

model and will start working with the

available data. The speed will be slightly

higher without a user interface on the server,

just command line.

• C# application as client, having

technologies like: ASP .NET for server-

side controllers, JavaScript for client-

side scripts, SQL Server for the database

storage and data processing, CSS for

adding a friendly interface.

This application will be quite useful at

monitoring data and taking manual actions,

where the interface is simple and friendly,

where relevant data is shown into the

interface, especially on the Chart control.

Speaking of network, the web application

will be the client, where the user can request

data at any moment or by an interval created

by the user. The WebForm will be hosted

via IIS on a local computer. For a fresh-

looking website, Dark Mode has been also

added.

Fig. 2. Light Mode client interface

Database Systems Journal, vol. XI/2020 5

Fig. 3. Dark Mode client interface

To get the Dark Mode working, JavaScript

and CSS keyframes are making the work

easier, creating a smooth animation for the

background change.

Fig. 4. CSS Dark/Light mode

In order to get this working in C#, we need

to use a server-side script, like JavaScript.

Fig. 5. JavaScript Dark Mode integration C#

Fig. 6. JavaScript Light Mode integration C#

In the client application, buttons with

custom text are used (unicode characters)

for a more self-explanatory functionality,

being recognized by both ASP HTML and

C#, but with different characters.

As we can see in the above example, the

Web client interface is created with centered

unicode characters and 2 variables in the

interior of a gradient circle.

Firstly, the Sun and the Moon unicode

characters are used as symbols for

Dark/Light mode. The action is working

client-side with JavaScript, so the server will

not interpret any design. The drop of water,

6 Usage of IoT in automation routine processes

as the second unicode character is meant to

sent a signal to the Arduino to immediately

water the plants running under this system

for approximately 5 seconds. Furthermore,

the client is sending a request to the server

with a signal sent via the TCP model. When

the server finish the job, it will send a

confirmation of success to the client, the

data being processed and, finally, inserted

into the specific database. The 3rd element,

the unicode character of refresh is created to

force a request to the server, so it can return

newer data, anytime the user wants to.

Anytime when a value exceeds or goes

under the critical low value, the C# will

instantly create a mail and send it to the

recipients.

Fig. 4. Automatic mail creation and transmission

3. Hardware application for routine

processes

For this project to be done, the following

components were needed:

• Processor NodeMCU 12E – low-cost,

efficient, open-source, integrated Wi-Fi,

powerful processor – 2.4 GHz.

Arduino IDE compatible, the NodeMCU is

the ideal module for small-medium projects

in IoT, being able to work with many

Arduino libraries. It has 9 digital pins,

meaning that we can attach maximum 9

digital sensors or less (depending of the

number of pins the sensors use). [2]

As example, a sensor of humidity and

temperature needs only a pin for

transmitting data, while an OLED display

will use 2 pins for showing data. Thanks to

the Wi-Fi integrated module, the

microprocessor will be able to communicate

data to the client Web with the TCP model

of data transmission.

Fig. 5. NodeMCU 12E

• Temperature and humidity sensor

Adafruit DHT22: digital, efficient,

accurate.

The DHT22 is a modern sensor which can

take accurate values of temperature and

humidity, with a 2 seconds minimum

interval between measurements. [3]

These values will be sent to the Web client

for immediate availability in the

recalculation of statistic analysis.

Fig. 6. Adafruit DHT22

• Breadboard – fast connection, no

soldering, useful for prototyping.

The breadboard is a fundamental piece

for IoT, making the work easier, because

of the electrical conductors integrated on

every pin. This connectivity board is a

friendly welcome to everyone who is

Database Systems Journal, vol. XI/2020 7

new in Internet of Things, because of the

simplicity of it. The processor links with

sensors and modules via soldering or

breadboard. For example, with the help

of jumper cables, we can insert one into

the GND (”-” polarity) pin of the

processor, and the other side into the

GND pin of the sensor/module, and

analog to the VCC (”+” polarity),

depending on the power the sensor needs

(3.3V or 5V). At this point, we created a

connection of power, but we will need a

pin to take or to send data to a

sensor/module. In the same manner, we

will just insert the jumper cable into the

DAT pin of the sensor and the other side

to any pin from D1-9 of the processor,

depending of the preferences of the user.

Fig. 7. Breadboard connectivity

As we can see in the above example, the

DHT22 sensor is conected to the NodeMCU

via 3 pins – 3.3V, GND and D6, meaning

that it will have power from the

microprocessor and data transmission. The

OLED screen will need one more additional

data pin for slave-master connection. [4]

• Water pump.

The water pump was connected as a ”Do It

Yourself” project, because it is a traditional

one and it has normal connectors, not the

one we need to connect to the board. But

thanks to IoT relays, we can connect the

water pump to it and the relay to the

NodeMCU, where will get 0 or 1 signals,

meaning that the pump is on or off.

This action can be triggered automatic or

manual, depending on the stats of the

DHT22 sensor and the user intervention.

Fig. 8. Water pump

• Switch button.

This type of module will be used to water

the plants manually, with physical

intervention, without any need of access to

the Web application. For additional

functionality, the button have an embedded

led to announce the user that the press

changed its state. As long as the button is

pressed, the water pump will transfer water

to the plants.

Fig. 9. Water switch

4. Functionalities and implementation

methods

In the Arduino IDE, we must declare every

sensor with the number of pin assigned

earlier, because from there the data stream

will start. In our case, we will declare the

library, the pin and the type of the

8 Usage of IoT in automation routine processes

temperature and humidity sensor, as

follows:

Fig. 9. DHT22 declaration

For a better view of the data stated into the

database, I created a Chart control, which

will show the temperature and humidity on

days/years. The data is directly queried from

the SQL Server.

Fig. 10. Temperature/humidity Chart (Light)

Fig. 11. Temperature/humidity Chart (Light)

4.1. Database structure and management

The creation of database is essential here for

long or permanent time interval storage.

Moreover, a database was created with 2

tables, one for the temperature and humidity

and one for the watering management.

Fig. 12. Temperature/humidity table

I used the ID attribute as primary key, with

auto-incrementation for easier management

of data collection. The attributes Temp and

Umid are floats, there is where the C# will

place the values from the DHT22.

Fig. 13. Watering management table

In the same manner, I used ID for better

management, dataOra attribute will be

created as a time stamp when the watering

will be done, plus the duration, marked with

the attribute durata.

Both tables will accept null values, because

the temperature can be 0, for example, and

we can manage to see when it begun to

show errors in data.

Fig. 14. Database tables

In order to be working with the database, we

will need to declare variables to create a

variable which will store data received, the

connection to the database, the query string,

the command and the parameter.

Database Systems Journal, vol. XI/2020 9

Fig. 14. Variables for database interaction

Fig. 15. Values for database interaction

In order to take the data from Arduino, we

need to use some variables for data received

and classification. To work with the data

easier, I made the Arduino server to put

comma between temperature and humidity

so I can manipulate the variable with

separator.

Fig. 16. Variables for data reception

4.2. Connectivity between the server and

client

Because a keep-alive session between

Arduino and the web can cause damage to

the board due to overheating, a network

stream can be opened any time the data is

requested. Newer data can be requested:

manually, when the refresh control is

pressed or automatically, when the page is

loaded or when the C# timer interval control

is reached. The entire application is meant to

work with short sessions.

Fig. 17. Creating network stream for fresh

data

As we can see in the earlier image, a port

was opened both on the Arduino and C# for

the 2-way communication. The control

TcpClient is a good tool to communicate via

internal network. Once the client started, the

client will go to the specified IP address

(fixed from the Arduino IDE), taking the

message “t” and sending it through the

network stream to the specified IP.

To receive what NodeMCU wrote on the

network, we created a byte variable named

data and a string named ResponseData, so

we can take both the bytes received and the

string received from the IoT processor. The

string is then split into 2 pieces with the

comma separator, followed by validating the

data and proceeding to the insert query to

the database.

Speaking of server, Arduino IDE has some

features which enables manual configuration

of the Wi-Fi server, as follows:

Fig. 18. (Creating manual connection)

As we can see, we must provide the SSID of

the Wi-Fi network and the password in plain

text, which can be a security threat. Because

the IDE is not supporting only the fixed IP,

10 Usage of IoT in automation routine processes

we must set the gateway (local router) and

the subnet, then we config the port we want

by creating an object WiFiServer with int

parameter.

Fig. 19. (Connecting to the Wi-Fi)

The Wi-Fi library is working very well with

NodeMCU, so we can setup all the data

before we turn on the connection.

Fig. 20. (Sending data to the client)

Firstly, we need to make the server available

via the loop function in the Arduino IDE.

For debugging reasons, I created a variable

named status, which will show me the IP

address of the NodeMCU everytime I press

the letter ‘s’.

The nested if statements if will validate the

connection and will send data only when the

client is ready to receive.

5. Conclusions

In this model, a project can be easily created

and upgraded with better processors,

multiple sensors, and, probably, a permanent

solution by soldering the pins and creating a

box to look like a commercial product. I

used the TCP model because I wanted a

good support from both Arduino and C#,

plus getting confirmation on every packet

sent into the network. This small project is

capable of showing relevant data about the

plant under observation, doing the routine

tasks, the user being alerted only when the

plant’s quality of life will be under or above

the critical values.

As an improvement at the moment, Arduino

Over The Air upload can be done with the

Python scripts.

References

[1] LWIG Working Group. (2018). IETF.

TCP Usage Guidance in the Internet of

Things:

https://tools.ietf.org/id/draft-ietf-lwig-

tcp-constrained-node-networks-04.html

[2] Last Minute Engineers. Insight into

ESP8266. Last Minute Engineers:

https://lastminuteengineers.com/esp8266

-

nodemcu-arduino-tutorial/

[3] Adafruit. (2012). DHT11, DHT22.

Adafruit:

https://learn.adafruit.com/dht

[4] Sparkfun. How to use a Breadboard.

Sparkfun:

https://learn.sparkfun.com/tutorials/how-

to-use-a-breadboard/all

https://lastminuteengineers.com/esp8266-%0bnodemcu-arduino-tutorial/
https://lastminuteengineers.com/esp8266-%0bnodemcu-arduino-tutorial/
https://lastminuteengineers.com/esp8266-%0bnodemcu-arduino-tutorial/
https://learn.adafruit.com/dht

Database Systems Journal, vol. XI/2020 11

Cornel MIRCESCU is a student pursuing Master’s Degree at Databases:

Business Support at the Faculty of Cybernetics, Statistics and Economic

Informatics from the Bucharest University of Economic Studies. He graduated

the “Petrol-Gaze” University from Ploiesti, at Cybernetics specialization

