
Database Systems Journal, vol. XI/2020 99

Exploiting stack-based buffer overflow using modern-day techniques

Stefan NICULA1, Razvan Daniel ZOTA1

1The Bucharest University of Economic Studies

niculastefan13@stud.ase.ro, zota@ase.ro

One of the most commonly known vulnerabilities that can affect a binary executable is the

stack-based buffer overflow. The buffer overflow occurs when a program, while writing data

to a buffer, overruns the buffer's boundary and overwrites adjacent memory locations.

Nowadays, due to multiple protection mechanisms enforced by the operating systems, the

buffer overflow has become harder to exploit. Multiple bypassing techniques are often

required to be used in order to successfully exploit the vulnerability and control the execution

flow of the analysed executable. One of the security features designed as protection

mechanisms is Data Execution Prevention (DEP) which helps prevent code execution from

the stack, heap or memory pool pages by marking all memory locations in a process as non-

executable unless the location explicitly contains executable code. Another protection

mechanism targeted is the Address Space Layout Randomization (ASLR), which is often used

in conjunction with DEP. This security feature randomizes the location where the system

executables are loaded into memory. By default, modern-day operating systems have these

security features implemented. However, on the executable level, they have to be explicitly

enabled. Most of the protection mechanisms, like the ones mentioned above, require certain

techniques in order to bypass them and many of these techniques are using some form of

address memory leakage in order to leverage an exploit. By successfully exploiting a buffer

overflow, the adversary can potentially obtain code execution on the affected operating

system which runs the vulnerable executable. The level of the privilege granted to the

adversary is highly depended on the level of privilege that the binary is executed with. As

such, an adversary may gain elevated privileges inside the system. Most of the time, this type

of vulnerability is used for privilege escalation attacks or for gaining remote code execution

on the system.

Keywords: stack buffer overflow, return-oriented programming, libc attack, exploiting buffer

overflow, stack protection mechanisms, address memory leak

Introduction

The stack-based buffer overflow is

one of the most commonly known

vulnerabilities and it still one of the most

exploited vulnerabilities that are affecting

software and operating systems [1]. A

successful exploitation of this

vulnerability can sometimes be difficult

to achieve and modern operating systems

nowadays have protection mechanisms in

place in order to prevent such issues from

being exploited. These protections can

also be implemented at the binary level in

order to increase its security level.

However, certain techniques can be used

in order to bypass these prevention

mechanisms but all the techniques

described do need auxiliary information

in order to be implemented. The study

presented will be focused on Intel

architecture x86, being more targeted around

the Linux operating system internals and

having as the main scope achieving code

execution on the underlying operating

system. The choice for Intel x86 architecture

was being made by taking in consideration

the significant difference between the x64

and x86 regarding calling conventions,

general stack frame usage and registers. The

x64 is far more complex compared to the

x86 counterpart.

The paper will approach the exploitation of

a stack-based buffer overflow by analysing

the current exploitation techniques available,

different protections implemented at the

operating system level and on binaries. The

1

100 Exploiting stack-based buffer overflow using modern-day techniques

paper continues with the analysis of

bypass techniques for the aforementioned

protection mechanisms, a case study that

applies some of those concepts, statistics

about current exploit numbers and

conclusions.

2 Exploitation prevention mechanisms

The buffer overflow has been an active

research topic through the history of

Computer Science and multiple aspects

have been addressed in order to prevent

different exploitations. We can encounter

multiple protection mechanisms that

prevent overflow from occurring or react

once the overflow happens [2].

Data Execution Prevention (DEP) is

implemented at the binary level and

dictates the execution privilege on a

memory location. This protection

prevents malicious code from being

executed directly from the buffer value

by allowing only specific memory

locations to have execution privileges.

Only certain memory blocks have

execution privileges if they explicitly

request so [3].

Address space layout randomization

(ASLR) is implemented by the binary or

by the operating system. This protection

mechanism randomizes the memory

address of the binary and external

libraries each time it gets executed. As

such, every attack which is based on

static known values will fail [4].

Stack canaries/cookies assure that the

stack data is not corrupted or overwritten

from untrusted user-supplied data. This

method works by placing a small

randomly chosen value inside the

program stack, in memory, just before the

stack return pointer. Because the buffer

overflow is writing stack memory from

lower to higher address, the return pointer

will be overwritten and thus the stack

canary will also be modified [5].

Partial or full RELRO removes all the

dynamic linked functions and ensures

that the Global Offset Table (GOT) is

read-only. By making GOT entries read-

only, an adversary can no longer overwrite

external function call addresses to a

controlled stack memory address [6].

Position Independent Executable (PIE) is an

optional feature that can be used at compile-

time which makes the executable behaviour

as a dynamic external library at linking and

loading time. This feature adds more

randomization in the linking and loading

process. A note here is that ASLR predates

PIE and ASLR does not require PIE to be

enabled [7].

These protection mechanisms can prevent

the exploitation of a buffer overflow and can

further limit an adversary's possibilities. For

most of these mechanisms, an auxiliary

vulnerability that can obtain a memory leak

address is mandatory in order to bypass

them.

3 Exploitation techniques and protection

bypasses

Exploitation techniques can vary greatly

depending on each buffer-overflow case; as

a result, a full exploit payload will be

subjective and customized depending on the

environment, the software targeted and the

operating system internals. A series of

protection mechanisms are presented by

every single layer mentioned. From these,

some have evolved into security best

practices implementation, while others are

still struggling to get traction. Nonetheless,

we can identify some common mechanisms

that can be encountered on a normal

environment setup enforced with the latest

default protections. This general

classification will be detailed in the next

sub-menus, approaching runtime protections

on memory level enforced by the underlying

operating system and protections

implemented on the binary level.

3.1 Bypassing DEP and ASLR

Some of the most common identified

protection mechanisms are the DEP and

ASLR. The Data Execution Prevention

mechanism is implemented at the binary

Database Systems Journal, vol. XI/2020 101

level. This protection mechanism allows

only specific stack frames to have

execution privileges. This translates in

the fact that data written in arbitrarily

chosen stack-frames cannot be referenced

by the instruction pointer to be executed.

A good example would be a buffer

overflow vulnerability that can be

exploited in order to point the instruction

pointer to a specific address inside the

stack which is controlled by our buffer

input. In this scenario, even though we

have control on the Instruction Pointer,

we cannot execute data that is being held

in the stack frame which we overwrite. In

order to bypass this protection, a

technique called Return Oriented

Programming (or ROP chain) can be

used. By using this technique, which can

also be referred to as Return to libc attack

[8], we can bypass the DEP protection [9]

by re-using code already present in the

exploited binary. Sometimes, the studied

binary does not have all the needed

instructions inside its base-code in order

to fully exploit an existing buffer

overflow. As such, the libc attack can be

used. Inside the libc library, we can re-

use a variety of instructions to fulfil the

scope of exploiting the vulnerability. To

use the libc code-base, we need to further

leak an address inside the targeted binary.

This can be achieved, for example, by

chaining a format string vulnerability

affecting the vulnerable binary.

In regards to the format string

vulnerability, this particular one is

sometimes crucial in exploiting a

vulnerable binary that has ASLR

protection on. This is mainly due to the

fact that ASLR protection is implemented

by the binary or by the operating system

[10]. In modern operating systems, the

ASLR protection is implemented by

default. As such, all the external libraries

linked to the targeted binary are having

randomized address values. However, the

binary itself can opt to have the ASLR

protection in-place. By doing this, the

binary will randomize its instruction

addresses and memory maps; each time the

binary is executed. In order to defeat this

protection mechanism, a vulnerability

(information leak) such as a format string

can be used in order to leak a base address

that can be further used by the developed

exploit. Another method of defeating this

popular protection mechanism is to use a

potential buffer overflow together with

calling a function that uses stdout in order to

print results. This can be further used by

leaking GOT and PLT addresses in order to

reveal libc base addresses [11]. Using the

obtained libc base address from the function

memory address leak, we can pinpoint the

exact version of the library used by the

executable. In this way, all the other

function references can be calculated based

on the initial libc version.

3.2 Return Oriented Programming and

Return to libc attack

We can particularly note the concept of

gadgets in a ROP chain. Gadgets are a set of

instructions that serve our purpose of

manipulating the executable in order to

achieve our scope. Gadgets are pieces of

code from the executable, commonly found

in the loaded external libraries but can be

found in the local binary code as well[12].

By using them, an adversary can do a

variety of actions such as invoking syscalls

while keeping the execution flow by always

returning inside a stack controlled memory

address. The need of RET opcode is

mandatory for gadgets in order for us to

keep the execution flow. Certain gadgets

require different parameters that should be

placed on the stack accordingly in the

payload, before the function call. We know

that functions are receiving parameters from

the stack and because we control the stack

using our buffer overflow, we can pass

arguments to the called functions. In this

way, we can create a chain of multiple

gadgets that will provide the capabilities of

executing code on the underlying operating

system through the usage of the binary

affected by a buffer overflow.

102 Exploiting stack-based buffer overflow using modern-day techniques

By comparing a typical Windows ROP

chain with a Linux ROP chain, we can

identify two different approaches that are

quite common. For the Windows

environment, oftentimes, the ROP

chain’s purpose is to make the stack

executable and basically disable DEP

using Windows API calls such as

VirtualProtect, VirtualAlloc or

NtSetInformationProcess whereas, for the

Linux counterpart, the technique usually

relies on executing directly a system

command. The magic gadget from C,

which basically is a code residing in the

libc library that when called it’s opening

a shell, is typically the goto exploitation

technique when using a ROP chain on a

Linux binary. Of course, there are also

alternatives for disabling DEP as well, on

the Linux side, for example, the

ret2mprotect.

3.3 Magic gadget C

As mentioned previously, one gadget that

can be used to exploit a buffer overflow

using ROP chain is the so-called C/C++

Magic gadget. Almost all of the libc

libraries contain a version of the magic

gadget. Basically, this gadget is used for

ROP chaining and consists of some code

residing in the libc which, when

executed, opens a shell. The magic

gadget code has to either call execve or

issue the corresponding syscall directly.

In our case, /bin/sh is set as a first

argument. [13]

3.4 GOT overwrite

Another exploitation technique is defined

by using the Global Offsets Table to

overwrite function entries in order to

execute malicious code [14]. This attack

method can be avoided by implementing

RELRO which basically removes all the

dynamic linked functions and ensures

that the GOT is read-only [15]. An

example of a successful GOT rewrite

would be overwriting a libc address with

a local stack-frame address that contains

malicious code. This can be prevented by

making the GOT read-only at the initial

launch of the binary file.

4 Memory leak using stdout functions

Given the constraints, aforementioned that

can be applied to a specific executable,

successful exploitation of a stack-based

buffer overflow requires a certain memory

address leak. This can be achieved in

multiple ways. One of the most common

techniques is finding and exploiting a format

string vulnerability which basically allows

us to leak values from the stack. Format

string vulnerability is a type of vulnerability

which allows an adversary to control the

format of the printed output. [16]

Another technique that I will discuss in the

next chapter is related to using certain

C/C++ functions that manipulate stdout in

order to leak entries from the Global Offset

Table (GOT). The GOT contains the direct

address of the function inside the external

libraries. At compile time, that address is

unknown, the dynamic linker will populate

the entry when the binary is executed and

the loading and linkage routines are

executed. Inside the studied binary, the

Procedure Linkage Table (PLT) is holding

the trampoline address value to the GOT. By

invoking a stdout from using the PLT

address to the GOT address reference, we

can obtain the actual address of a function

from the loaded external library. [17]

5 Case study example

The previous chapters enumerated a series

of exploitation techniques that can be

implemented in order to bypass specific

protection and prevention mechanisms. Let's

look at the following code snippet example

which is vulnerable to stack-based buffer

overflow:

int main(){

 char local_var [60];

 puts("Enter some input:");

 fflush(stdout);

 fgets(local_var,700,stdin);

 return 0;

Database Systems Journal, vol. XI/2020 103

}

Inside the main function, we can note the

initialization of the "local_var" variable

which is of type char vector of size 60.

We can note the usage of the "puts"

function which we will later abuse in

order to obtain an address memory leak.

The "fgets" function call is receiving a

stream input of max size 700 from the

standard input and stores the input inside

our previously declared local variable.

Since there is no boundary check on the

"local_var", the user can provide a size

larger than the allocated size 60 of the

buffer, thus resulting in a buffer overflow

scenario.

For this particular exploit, we will use

gdb peda and pwntools as an example of

automating certain tasks and for the ease

of use that these tools are bringing to the

table [18]. The binary will be

dynamically compiled targeting i386-x86

architecture for the Linux platform so the

compiled analyzed binary will be an ELF

file designed for x86 architecture.

By checking the security feature of the

binary after the compilation, we can

observe the following:

ASLR: OFF

CANARY: disabled

FORTIFY: disabled

NX: ENABLED

PIE: disabled

RELRO: partial

By investigating the checksec output

from gdb peda, we can observe that this

is a classic buffer overflow example that

can be exploited using ROP chain

gadgets. We can note that the binary does

not have local ASLR enabled and we also

note the lack of stack canaries. Even if

the ASLR is disabled for the binary, the

external libraries used are subject to

randomization due to the ASLR enforced

by the operating system [19]. We can also

note that the NX (not executable) feature

is enabled. By studying this particular

case, we can note that the buffer overflow

can be exploited but it will require a ROP

chain in order to achieve code execution.

That's because the NX privilege is enabled

which does not allow us to redirect the

execution flow in our controlled buffer but

the missing stack canaries protection means

that next execution instruction can be

overwritten with our chosen address[20].

Considering that the binary is compiled with

dynamic libraries, we will require a memory

leak to obtain a base address from the libc

library. Since we have no ASLR enabled on

the binary level, we can search for the

address of the puts function which is a

stdout function. By invoking the puts using

the PLT address of the puts function from

the GOT, we can obtain the puts address

inside the actual libc library. We want puts

to call itself on the Global Offset Table

which will give us the address of the puts in

the binary that changes every single time

[21]. We can obtain the binary PLT address

of the puts by using objdump on the

compiled binary.

When an external function such as puts is

called, and example of a function trace call

would be the following:

puts@plt 0x400476 -> puts@got 0x601018 -

> puts@libc linked address

Because the program is dynamically linked,

the external libraries such as libc are

resolved using PLT and GOT. The way the

function trampoline works helps in this

situation, the GOT entry for the puts

function holds the dynamically resolved

address for that specific function. The PLT

contains the function trampolines to the

GOT structure table. The function

_dl_runtime_resolve will resolve GOT

entries with the correct value for the puts

function from libc.

After obtaining the puts address from the

libc, we can calculate the base address of the

libc itself. We need this information in order

to create ROP gadgets based on libc. The

library address is modified every time the

binary is executed so we need to calculate its

104 Exploiting stack-based buffer overflow using modern-day techniques

base address in order to correctly

reference other code snippets from inside

the libc.

From the libc base address, we can use

any specific gadget from the libc library

which will provide us a reverse shell. One

particular gadget described earlier is the

Magic Gadget which uses a series of code

snippets to execute syscall as execve into

/bin/sh.[22]

6 Statistics

By analyzing the publicly available

indexing measurements, we can draw

some interesting conclusions based on the

data collected. For example, Fig. 1 and

Fig. 2 are showing the overall trend of

the stack-based buffer overflow CVE list

taken from the MITRE website from

2005 to 2019. Interestingly, the number

of CVEs appears to remain constant and

even increases starting from 2016 while

also taking into consideration the peak

reports recorded in 2007. We need to

keep in mind that these are reported

CVEs and they do not necessarily have a

publicly available Proof of Concept or

full exploit. For this data, we can refer to

the exploit-db website where we can

identify that all-time 321 entries are

related to a stack-based buffer overflow.

That means, only a handful of

vulnerabilities from the ones reported

annually also have publicly available

exploits as well.

Fig. 1. Stack buffer overflow CVE entries

count according to MITRE

Fig. 2. Stack buffer overflow CVE entries

flow chart according to MITRE

7 Edge cases and limitations

Compared to heap-based buffer overflows,

the stack overflows can be considered much

simpler yet they can present some

interesting edge cases that are making the

exploitation much harder.

Some buffer overflows could potentially be

more situational than others. A good

example would be the need of a partial

overwrite of the EIP that is very unlikely

although certain exploits do use this

technique in order to bypass randomizations

[24].

Limitations on exploitation can also include

bad characters. Although they do not

prevent the finding of the primitive buffer

overflow, they are however hardening or

sometimes even preventing full exploitation

of the vulnerability, taking into

consideration the other protection

mechanisms in place as well.

Although extreme edge cases can be quite

rare, full exploitation to bypass all the

limitations requires a certain amount of

analysis and dedication. Shellcodes can be

generated while taking in consideration the

bad characters as well however, the primary

drawback is the size of the shellcode after

the bad characters are applied. Usually, the

shellcode size can exponentially get bigger

with the increased number of characters to

be avoided, sometimes even being

impossible to generate position-independent

code with too many bad characters in the

blacklist [25].

Database Systems Journal, vol. XI/2020 105

Depending on the tested software, some

common bad characters to be taken into

consideration are 0x00, 0x0D, 0x0D and

0xFF. These characters should generally

be avoided when building an exploit

payload.

8 Windows vs Linux buffer overflow

On a Windows-based environment we

can note specific particularities and

situations when discussing stack-based

buffer overflow exploitation. There are

mainly two important differences that we

note, we have the standard buffer-

overflow that overwrites the saved

returned pointer from the stack and we

also have the SEH (Structure Exception

Handling) based buffer overflows.

In a Windows-based software, if no

explicit exception handlers are presented

in the source code of the application,

every thread will have an assigned

handler and custom specific handlers will

be added as an optional addition.[26]

These values will be pushed onto the

stack for each function and it will

represent the pointers for treating

different exceptions such as dividing by

zero.

Fig. 2. Overwriting the stack with SEH

entries

In a stack-based buffer overrun scenario,

what would usually happen would be that

the entries for the Structure Exception

Handler will be overwritten by our buffer,

resulting in a particular case where the

return pointer is no longer our main EIP

pivoting mechanism like in Linux. The SEH

structure will no longer contain pointers

inside their own exception handling routines

but rather contain values overwritten by our

buffer. This will cause the operating system

to follow those values and consider them as

valid addresses which would normally point

to code paths that would resolve the

exception.

When dealing with a SEH-based buffer

overflow, a popular exploitation technique is

the pop/pop/ret instruction set [27]. Due to

the alignment on the stack for the

EXCEPTION_REGISTRATION structure

and the pointers associated with it, the

overrun scenario often requires to pop-in

two values of the stack and returning

directly into our user-supplied shellcode.

However, this is not always the case,

depending on the situation, a SEH based

buffer overflow could require multiple stack

alignment moves in order to reach a known

code cave.

Finally, another notable difference would be

the ROP chaining creation process. Similar

to the Linux case, after we take control over

the EIP, we need to rely on built-in code or

user-supplied shellcode in order to execute

custom code on the machine. However, in

our case, each Windows has a different DLL

version even for the same build number,

there can be differences in terms of

Windows expansions, modifying the DLL

version and offset itself. A hard-coded value

can be used for the same deploy of Windows

version but ultimately, the best approach

would be a combination of memory

information disclosure of a DLL base

address followed by offset calculation to

reach the needed function gadgets.

9 Conclusions

A stack-based buffer overflow can be

exploited in multiple ways depending on a

number of variables. First of all, the

allocated buffer size can play a huge role in

106 Exploiting stack-based buffer overflow using modern-day techniques

choosing the right way to exploit the

issue. In the previous case study shown,

the buffer size was generous and allowed

us enough space to inject various

addresses and use multiple techniques

without worrying too much about the

memory space. If the buffer size was

restricted to a small limited number of

characters, additional steps would be

required to successfully exploit the

vulnerability. For example, an additional

input buffer may have been required to

redirect the execution flow into it

however, that hypothetical input needed

to be, again, controlled by the adversary.

Some techniques used to get around the

limited buffer size promote the usage of

environmental variables that are loaded

by the binary when executed. A memory

leak address is needed in order to obtain

such details. The second problem raised

is related to the protection mechanisms

that are preventing a straight forward

exploitation technique. We cannot

redirect the execution flow directly into

our defined buffer due to DEP. Also, the

address to libc functions is randomized

each time we execute the binary given the

ASLR protection enabled. We also have a

disabled RELRO which should allow us

some opportunities to overwrite the

GOT-PLT entries inside the memory

blocks. In order to bypass the

aforementioned protections, a memory

address leak is mandatory in order to

obtain an address so we can further

calculate our needed function addresses.

A stack-buffer overflow cannot be

exploited stand-alone, it can be

situational and certain memory leak

vulnerabilities are required given the

protection mechanisms encountered in

the process. A very important role is how

to understand the internals of a program

as well as properly identifying and using

external libraries loaded by the

executable in order to achieve code

execution.

Buffer overflows are still emerging,

active and real threats. Yearly, this

specific vulnerability can be encountered in

multiple CVEs reported on popularly known

software [23]. In order to successfully

exploit them, certain techniques are required

in order to bypass common protection

mechanisms. Nevertheless, these

vulnerabilities are still found in solutions

that have a high level of maturity in terms of

security best practices and implementations.

We should not overlook nor undermine their

potential risk, even though modern-day

systems are implementing multiple

protection mechanisms in order to try and

prevent such attacks.

References

[1] National Institute of Standards and

Technology. ICAT

Metabase.http://icat.nist.gov/

[2] Erick Leon, Stefan D. Bruda, Counter-

measures against stack buffer overflows

in GNU/Linux operating systems., The

International Workshop on Parallel

Tasks on High Performance Computing,

Procedia Computer Science 83, 2016,

Volume 83, pages 1301 – 1306

[3] A detailed description of the Data

Execution Prevention (DEP) feature in

Windows XP Service Pack 2, Windows

XP Tablet PC Edition 2005, and

Windows Server 2003, (Jul.2017)

https://support.microsoft.com/en-

us/help/875352/a-detailed-description-

of-the-data-execution-prevention-dep-

feature-in, retrieved Dec.2018

[4] Address Space Layout Randomization,

(Mar.2003),

https://pax.grsecurity.net/docs/aslr.txt,

retrieved Feb. 2015.

[5] Buffer overflow protection, (Jun.2018),

https://en.wikipedia.org/wiki/Buffer_ove

rflow_protection#Canaries, retrieved

Jan.2019

[6] Hardening ELF binaries using

Relocation Read-Only (RELRO),

(Jan.2019),

https://www.redhat.com/en/blog/hardeni

ng-elf-binaries-using-relocation-read-

only-relro, retrieved Jan.2019

Database Systems Journal, vol. XI/2020 107

[7] Position Independent Executables

(PIE), (Nov.2012),

https://access.redhat.com/blogs/76609

3/posts/1975793, retrieved Jan.2019

[8] Return-to-libc Exploit, (Feb.11),

https://medium.com/@nikhilh20/retur

n-to-libc-exploit-aa3fe6fb0d69,

retrieved Mar.2019

[9] Bypassing DEP with ROP (32-bit),

(Dec.2017),

https://bytesoverbombs.io/bypassing-

dep-with-rop-32-bit-39884e8a2c4a,

retrieved Mar.2019

[10] Bypassing ASLR - Part I, (May

2015),

https://sploitfun.wordpress.com/2015/

05/08/bypassing-aslr-part-i/, retrieved

Dec.2018

[11] Yan Fen, Yuan Fuchao, Shen

Xiaobing, Yin Xinchun, Mao Bing, A

New Data Randomization Method to

Defend Buffer Overflow Attacks,

International Conference on Applied

Physics and Industrial Engineering,

Physics Procedia 24, Volume 24, Part

C, 2012, pages 1757-1764

[12] Bruce Dang , Practical Reverse

Engineering: x86, x64, ARM,

Windows Kernel, Reversing Tools,

and Obfuscation, Wiley Publishing,

2014

[13] The magic gadget, (Sep.2016),

)https://github.com/m1ghtym0/magic

_gadget_finder, retrieved Apr.2019

[14] How to hijack the Global Offset

Table with pointers for root shells,

(Apr.2006), https://www.exploit-

db.com/papers/13203, retrieved

Apr.2019

[15] Ryan "elfmaster" O'Neill, Learning

Linux Binary Analysis, Packt, 2016

[16] Format String Exploitation-Tutorial,

https://www.exploit-

db.com/docs/english/28476-linux-

format-string-exploitation.pdf,

retrieved Apr.2019

[17] P. Silberman and R. Johnson, A

Comparison of Buffer Overflow

Prevention Implementations and

Weaknesses, presentation at Black

Hat USA, Caesar's Palace, Las Vegas,

NV, USA (Jul. 2004).

[18] Eldad Eilam, Reversing: Secrets of

Reverse Engineering, Wiley Publishing,

2005

[19] Sahel Alouneh, Mazen Kharbutli, Rana

AlQurem, Stack Memory Buffer

Overflow Protection Based on

Duplication and Randomization, The 4th

International Conference on Emerging

Ubiquitous Systems and Pervasive

Networks, Procedia Computer Science

21, 2013, pages 250 – 256

[20] G. Duarte. Epilogues, Canaries, and

Buffer Overflows, (Mar. 19 2014),

http://duartes.org/gustavo/blog/post/epilo

guescanaries-bufferoverflows/ , retrieved

Feb. 2015.

[21] Ryan "elfmaster" O'Neill, Learning

Linux Binary Analysis, Packt, 2016

[22] Smashing the Stack, (Apr.2014),

http://phrack.org/issues/49/14.html,

retrieved Oct.2018

[23] Mitre CVE Buffer Overflow search

result, https://cve.mitre.org/cgi-

bin/cvekey.cgi?keyword=Buffer+Overfl

ow, retrieved May.2019

[24] Kai Jander, Lars Braubach , Alexander

Pokahr, Practical defense-in-depth

solution for microservice systems,

International Journal of ubiquitous

systems and pervasive networks

(JUSPN), volume 11, issue 1, 2019,

pages 17-25

[25] Madjid Kara, Olfa Lamouchi, Amar

Ramdane-Cherif, Software quality

assessment algorithm based on fuzzy

logic, International Journal of ubiquitous

systems and pervasive networks

(JUSPN), volume 8, issue1, 2017, pages

01-09

[26] Defeating the Stack Based Buffer

Overflow pevention mechanism of

Microsoft Windows 2003 Server,

BlackHat Asia 03(Sept.2003),

https://www.blackhat.com/presentations/

bh-asia-03/bh-asia-03-litchfield.pdf,

retrieved Aug.2018

[27] The need for a POP POP RET

instruction sequence, (Oct.2010),

108 Exploiting stack-based buffer overflow using modern-day techniques

https://dkalemis.wordpress.com/2010/

10/27/the-need-for-a-pop-pop-ret-

instruction-sequence/, retrieved Oct.2019

Stefan NICULA graduated from the Faculty of Cybernetics, Statistics and

Economic Informatics of the Bucharest University of Economic Studies in

2016 and followed a Master's degree in IT&C Security at the same

university. He is a threat researcher and pentester with over 5 years of

experience. His areas of expertise are in penetration testing, malware

analysis, reverse engineering, and exploitation techniques, with a passion for

Windows internals, vulnerability research, exploit development, and mitigation techniques. At

present he is pursuing a PhD in Information Security at the Bucharest University of Economic

Studies, focusing on heap memory exploits on browsers, Windows kernel vulnerabilities and

fuzzing Windows API functions. Current publications and public presentations held by Stefan

are covering areas such as IoT security evaluation and Windows binary exploitation, latest

malware trends and recent developments in the exploit development field.

Răzvan Daniel ZOTA has graduated the Faculty of Mathematics –

Computer Science Section at the University of Bucharest in 1992. He has

also a Bachelor degree in Economics and a postgraduate degree in

Management from SNSPA Bucharest, Romania. In 2000 he has received

the PhD title from the Academy of Economic Studies in the field of

Cybernetics and Economic Informatics. From 2010 he is supervising PhD

thesis in the field of Economic Informatics, part of the Doctoral School of

Economic Informatics in the Bucharest University of Economic Studies.

