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At a basic level, the aim of machine learning is to develop solutions for real-life engineering 

problems and to enhance the performance of different computers tasks in order to obtain an 

algorithm that is highly independent of human intervention. The main lying ingredient for all 

of these, is, of course, data. 

Data is only valuable if it is transformed into knowledge, or, experience and the machine 

learning algorithm is only useful if it can make a prediction with high accuracy outside the 

examples in the training set. The field of machine learning intersects multiple domains such 

as data science, artificial intelligence, statistics, and computer science, but has appliances in 

any possible field that relies on decision making based on evidence, including healthcare, 

finance, manufacturing, education, marketing and recently, more and more in agriculture and 

farm-related management systems. As the Internet of Things and Cloud-Based solutions are 

introducing artificial intelligence in farming, the phenomenon of Big Data is going to impact 

the whole food-supply network.  Machines that are connected with each other through a 

network or that are equipped with deep learning software or just with measurement systems 

are making the farming processes extremely data-driven. Fast decision-making capabilities 

might become a game-changing business model in this field. 
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Introduction 

Precision agriculture — a suite of 

information technologies used as 

management tools in agricultural 

production— has already advanced and 

will continue to change farm 

management, from the way farmers 

consider their commodity mix, scout 

fields, and purchase inputs, to how they 

apply conservation techniques, and even 

how they price their crops and evaluate 

the long-run size of their operations [1]. 

Mainly, the main focus of researchers and 

one big improvement for the farmers is 

the analytical causality between seeds 

and fertilizers or be-tween irrigations and 

crop quality.  Traditional methods to 

determine relationships between such 

inputs and outputs relied on experiments 

or estimating data by mixing observed 

data sets with behavioral models, such as 

two-stage least square technique. 

For a vast majority of farmers, the small 

plot experiments are mainly focused on 

few inputs and restricted to a determined 

time/season/location and cannot be often 

generalized, so the results may not be 

relevant and such implementation might be 

costly. The intersection of machine learning 

and agriculture might offer the starting point 

of a broader solution de-signed to optimize 

crop management. The aim of this article is 

to cover the implementation and the impact 

of reinforcement learning algorithms in 

smart farming, starting from the problem 

that many farmers face when they choose 

between using past production methods that 

bring income and exploring the value of new 

practices that can increase income. This 

problem fits under exploration vs. 

exploitation paradigm, and the focus of this 

paper is to conceptualize it as a multi-armed 

bandit problem. Also, on the same note, 

considering the increased costs of 

transportation, a conceptual implementation 

of a self-driven truck in an established 

environment is presented. 
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2 Content details 

 

2.1 Types of machine learning 

algorithms  

 

Machine learning algorithms can be 

classified into three categories: 

 

• Supervised Learning  

• Unsupervised Learning  

• Reinforcement Learning 

 

First-class needs a labeled data set in 

order to acquire the optimal knowledge. 

One good example would be the 

classification of a never-before-seen item 

based on a trained model that includes 

many items recorded in the data set with 

a corresponding label. Saying that z is the 

feature vector, as, in the data instance, the 

equivalent label of z would be f(z), 

known as the ground truth of z. The 

feature vector can be a multi-dimensional 

vector of different features that are 

relevant to the item, and the value of f(z) 

is one of a couple of classes of which the 

item belongs, so the model, is basically a 

classifier. If f(z) can have multiple values 

and the outcome values are ordered, then 

the model is a regressor.  

Considering a prediction model of z as 

p(z), the success of the model under the 

influence of a parameter, p(z|θ), depends 

on the distance between these two 

vectors:  f(z) and p(z|θ). This distance is 

known as the cost. The main goal of 

supervised learning is to minimize the 

cost, so to determine the parameters of 

the model that among all the data points 

of z, result in minimum cost.  

 

Unsupervised learning assumes 

modelling data without knowing the 

associated labels. 

Dimensionality reduction and clustering 

are very powerful tools that are broadly 

used to gain knowledge from data alone. 

The first one implies removing redundant 

features, in order to lower the dimensional 

space of the feature vectors, and clustering 

manages the process of distributing the data 

in specific classes without considering the 

pre-defined labels.  

Unlike training labeled datasets provided by 

an external „teacher”, and different from the 

approach of finding patterns in unlabeled 

datasets, reinforcement learning challenges 

the trade-off between exploration and 

exploitation. 

 

2.2 Reinforcement learning 

 

The very basic definition of reinforcement 

learning is acquiring knowledge through 

interaction with an environment. An agent 

acts in a specified environment and adapts 

its behaviour based on the rewards that it 

receives. The roots of the trial-and-error 

process are in behaviourist psychology [2], 

the agent main goal being to learn a strategy 

[policy] that would maximise the 

cumulative reward. 

Reinforcement learning theory is already 

contributing to our understanding of natural 

reward, motivation, and decision-making 

systems, and  it can contribute to the 

improvment of human abilities to learn, to 

remain motivated, and to make decisions 

[3]. 

The agent in the reinforcement learning 

algorithm, at a predefined time step, t, 

detects a state, st. The interaction with the 

environment assumes taking an action at, 

that will trigger the transition of both the 

agent and the environment to a new state 

st+1, defined by the previous one and the 

taken action. The state consists of sufficient 

statistics in order to offer the agent all the 

needed data in order to proceed in the best 

direction.  

The rewards given by the environment 

determine the optimal sequence of actions, 

formally called „policy". The change of the 

state consists also in providing feedback to 

the agent, as a scalar reward rt+1.  Knowing 

the state, the policy will return a single 

action or a set of actions to perform.  

One efficient technique to describe the 
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environment in an RL problem would be 

the Markov Decision Process approach, 

which provides an efficient model that 

can perform probabilistic inference over 

time. [4] 

 

Markov Decision Process elements are as 

follows:  

 

• The set of states -  S 

• The set of actions - A  

Each s(i) state has its corresponding 

action or set of actions A(s(i)). 

• The transition probabilities model 

P {St+1 = s  | St = s, At = a}  

The probability of going from state st to 

state st+1 depends only on the action and 

on the state. 

• Reward function -  R(s)  

• Discount factor: γ ∈ [0, 1) 

 

Once the agent takes an action at, 

selected from a set of actions that 

correspond to the state st, the agent gets 

the expected value of the reward, R(s,a) 

and, given the transition probability, the 

state of the process moves to the next 

one, so the model builds a path of 

transited states. Policy π is a mapping 

from states to a probability distributions 

over actions π(s,a). So, it describes the 

way of acting. The function depends on 

the action and the state and returns the 

probability of taking the action in the 

specific state.  

 

 
 

The scope of the RL is to get the 

maximum reward from all states, with the 

optimal policy: 

 

 
 

Learning the optimal policy implies using 

one of the two types of value functions 

available in machine learning: an action-

value function - Q(s,a) – or a value 

function V(s). 

 

Following a policy in state s, the expected 

return would be given  by the formula: 

 

 
 

Even though the state is the same, the value 

function varies depending on the policy. The 

action-value function returns the value 

added by taking an action in a specified state 

when approaching some policy. 

 

 
 

We can rewrite the value function in this 

manner: 

 

 
 

Taking into account the transition 

probability, and the expected reward that the 

agent receives by taking the action a and 

moving to state st+1, we obtain the Bellman 

equation for the action value function: 

 

 

 

And also, we can do this for  the action-

value function: 

 

 

 

 

This equation is important because allows 

expressing values of one state as values of 

another state, so if we know the value of a 

specific state we can determine the value of 

another. 
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3. The Thompson Sampling Algorithm  

 

Thompson sampling is an algorithm for 

online decision problems where actions 

are taken sequentially in a manner that 

must balance between exploiting what is 

known to maximize immediate 

performance and investing to accumulate 

new information that may improve future 

performance [5].  

 

Although it was first proposed in 1933, it 

is only in the past years that interest into 

its potential developed, and currently, it 

has been successfully applied in a broad 

variety of domains, especially in website 

management, A/B testing, portfolio 

management, or recommendation 

systems. The concept of the n-armed 

bandit problem is as follows: among a set 

on n actions,  the agent is asked to make a 

choice.  

Every choice will be rewarded with a 

numerical value selected from a 

stationary probability distribution. The 

objective of the agent is to maximize the 

value received after each action over a 

number of fixed iterations, or time steps. 

The greedy approach of this assumes 

selecting the action that will return the 

highest reward, a phase that corresponds 

to the exploitation part. Improving the 

estimate of a reward, by choosing one of 

the nongreedy actions is the exploration 

phase. 

The multi-armed bandit problem is often 

presented as a slot machine with n arms. 

By pulling one arm at a time step, a 

reward is given and over M number of 

rounds, the player’s scope is  to obtain 

the maximum sum of the rewards. 

 Given the fact that the rewards are 

random, each one of the n arms defines 

for k ∈ {1, 2, … , n} a stochastic process 

{Xi,m} in the form of a distributed 

sequence of random variables, with an 

unknown mean μi. One specific type of 

the bandit problem is the Bernoulli 

Bandit, which models the probability of 

an event occurrence, that follows a 

binomial distribution, with N = 1, which is 

basically, the Bernoulli distribution.   

This model can be adapted to the problem of 

the farmer that needs to decide which plots 

to select as experimental plots for different 

seeding rates.  

Supposing that the farmer manages many 

fields, the purpose of our model is to decide 

where to place experimental plots in order to 

obtain improved yield response.  

Each field has different soil characteristics, 

such as nutrients, acidity/alkalinity, organic 

matter or type.  

The decision implies using all this 

information for better placement of the 

experimental plots in the field. The feature 

vector, v, of a field consists of a predefined 

number of similar characteristics for each 

field and an area in the fields is defined by  

M = ∑i |(v(i)| , the total of the feature values. 

Let’s assume that v(1) describes parts of the 

field by nutrients content, with values 

varying in different ranges: less than 4%, 

between 4.5% and 5%, 5% and 7% and over 

7%, so the field would be divided into four 

areas. 

 

Following the same approach, v(2) can 

classify the field into five areas depending 

on the pH value, so we would have 9 parts 

of the field that can overlap. Coming back to 

our model, each of these parts nine parts is 

an “arm’ of the multi-armed bandit problem. 

By selecting an area and placing a plot there, 

the farmer observes and figures if the plot 

improved the total reward, in this case, the 

yield response. 

 

The model we follow to track the yield 

response to the seeding rate is as follows, as 

propesed in [6] : 

 

 [6] 

 

Ymax is the estimated asymptotic yield 

maximum, and  determines the 

responsiveness of yield as seeding rate 

increases.  
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Therefore, a smaller  indicates that a 

higher seeding rate is needed to reach 

maximum yield for that seed treatment. 

[6] 

 

The nonlinear least squares (NLS) was 

used to estimate the parameters Ymax and 

 separately, an estimation that can be 

achieved by the algorithm [6]. 

 

Each area from the fields is assigned, at 

each step, a probability that selecting a 

plot that belongs to it will improve the 

estimation of the parameters. 

The probability function is based on the 

previous steps, which resulted in the 

better or worse estimation of the 

parameters.   

 

A reward of 1 is added if selecting the 

field area improved the accuracy of the 

prediction, and 0 otherwise. After that, 

the area with the greatest probability of 

improving the estimation is selected. At 

each iteration of sample selection, a new 

sample will be added to the training 

dataset.  

The expected rewards are modeled using 

a probability that follows Bernoulli 

distribution with parameter πi ∈ [0, 1]. 

We maintain an estimate of the likelihood 

of each πi given the number of successes 

αi and failures βi observed for the field 

area. Successes (r = 1) and failures (r = 0) 

are defined based on the reward of the 

current iteration. It can be shown that this 

likelihood follows the conjugate 

distribution of a Bernoulli law, a Beta 

distribution Beta(αi , βi) [7] : 

 

 

 
 

 

 

 

 

 

Thompson Sampling for Sample Selection 

[7] 

 

1: Ymaxi = 1, βi = 1,S={}, M={areas}, 

A={1,2,…M},N=field areas ,∀i ∈ {1, . . . , 

M} 

2: for t = 1, , ...N do 

3:   for i  1, . . . , N do 

4:       Daw ˆπi from Beta(Ymaxi, βi) 

5:  Reveal sample ht = {xt, yt, mt} from 

field areas Cj   

where j := arg maxi ˆπi. 

6:  Add sample ht to S and remove from 

all field areas. 

7:        Obtain new model parameters 

Ymaxi, βi  

8:      Compute reward rt based on new 

prediction: 

 
9:  if rt == 1 then Ymaxj = Ymaxj + 1 

10:  else βj = βj + 1 

 

4 Q-Learning Algorithm 

 

The underlying philosophy of this algorithm 

is based on the following method: the agent 

takes an action at a particular state and the 

feedback consists of a reward or a penalty. 

The agent can evaluate the feedback by 

estimating the value of the state to which it 

was taken. So, the learning is the process of 

going through different stages with the 

scope of maximizing the future return, R. 

The return from a specific time step, rt, can 

be defined also by using the discount factor, 

γ, where 0 < γ < 1, defined before as an 

element in the Markov Decision Process. 

The important thing to consider is that if the 

value of this factor is smaller, the agent 

would be inclined to choose only the 

immediate reward and not take into 

consideration the up-coming rewards.  

If γ =1, then all rewards are equally 

considered. The algorithm makes use of the 

action-value function and estimates the 

optimal function, with no regards of the 

policy that it follows. But, the policy is used 

also in this approach in order to map the 

pairs of states and actions that were updated. 
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The applications of this algorithm in 

farming are many, but we will consider 

one simulation, a delivery truck that is 

self-driven. 

The truck's job is to get the crop from a 

determined place and to deliver it to 

another. Basically, the reinforcement 

algorithm that we will model will follow 

pre-defined steps as: environment 

observation, deciding upon the action to 

take based on the strategy of maximizing 

the obtained reward, acting, receiving the 

penalty or the reward, accumulating 

experience and improving the strategy 

and, finally, iterating until the optimal 

function is found. 

A high positive reward is going to be 

obtained for a successful arrival at the 

location, and a penalty will be given if 

the truck arrives in the wrong place. The 

discount factor will be used when not 

getting to the destination after every step, 

meaning that late-arriving is better than 

making wrong moves. 

The state-space consists of all situations 

that the truck may encounter and consists 

of useful data needed in the decision-

making process. 

Assuming that the field is the training 

area of the truck, we don't have to 

consider many obstacles that might be 

encountered, but only the area of the 

field, which we can divide in small plots, 

viewed as a matrix M. 

For the purpose of the example, we 

would consider 36 possible plots, some of 

them may contain the silo and some can 

contain the harvested crop.  

The actions will be defined as crop-load, 

crop-delivery, west, north, east and south. 

In the code, we would assign a penalty 

for every stop at the wrong silo location. 

The algorithm will only make use of the 

state space and the action space, and we 

will assign, in the defined order, a value 

from 0 to 5 to each action. For each state, 

the optimal action is the one that adds the 

most to the total reward. 

When the environment is defined, a 

reward table or a matrix [number of states 

as rows, number of actions as columns] is 

created, named the Q-table. The table is 

used by the agent to acquire knowledge 

from it and hold the values of action-value 

functions, initially populated with zeros, but, 

during the training, with values that will 

optimize the agent strategy for the maximum 

total reward. 

The first step of the algorithm is the creation 

of Q-table with 0 values. Secondly, the 

algorithm will iterate trough each state and 

select any of the actions that are available 

for the chosen state. As a result of the action 

taken, the agent „goes" to the next state and 

sees which action has the greatest Q-value. 

The Q-table will be updated afterwards with 

values obtained from the Boltmann equation 

(2) and the next state will become the 

current state. This will be repeated until the 

goal is reached. After training with a large 

data set, it is proven that the agent has 

effectively learned the best move in a 

predefined matrix. Over time, the hyper 

parameters as the learning rate and the 

exploration level should decrease, as the 

gained knowledge increases, and the 

discount factor would increase as well 

because receiving the desired reward very 

fast is preferable. 

Q-Learning learns the optimal policy even 

when actions are selected according to a 

more exploratory or even random policy [8]. 

 

5 Implementation 

 

5.1 Multi Armed Bandit Algorithm 

Evaluation 

 

For the Multi-Armed Bandit algorithm, we 

make use of the pandas library in Python. 

Pandas is a very powerful tool that enables a 

lot of tools for data processing with very 

high optimization.  

Because of the lack of data that is needed for 

the conceptual problem described, the 

method of implementing the algorithm relies 

on a randomly generated a set of data. 

For the sake of simplicity, we assume 

already observed data for the plots, and the 

yield already computed based on the model 
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described above[6]. We encode the 

obtained yield over fixed values as a 

good one, and we annotate it with „1", 

and whatever is below the value, with  

„0".  

Using pandas, a DataFrame object is 

created with the randomly obtained 

values for 200 observations.  

 

 
 

A list is initialized for the rewards 

associated with each plot, and one for all 

the penalties that belong to the plots.  

For each observation, we iterate through 

each machine and based on the highest 

random beta distribution, the plot selected 

is updated with the plot/machine used. 

Once the plot is selected, the data 

corresponding to it is verified and we 

updated the list of rewards/penalties 

accordingly. 

 

 
 

 

 

 

 

The output is : 

 
Fig. 1. Plot selection 

 

In order to make sure that the algorithm 

selected the most optimal plot over time, we 

make a histogram of the plot that we use 

over time.  

 
Fig. 2. Histogram of selected 

plots 

 

By comparing the two graphs, we can see 

that the optimal plot was selected every 

time.  

 

5.2 Q-Learning Algorithm evaluation 

 

According to the GitHub repository, openAI 

Gym is a toolkit for developing and 

comparing reinforcement learning 

algorithms. For the implementation, the 

available collection of environments is 

useful for testing the agent, because the 

library also provides the required 

information as in states, scores or actions. In 



10  A Reinforcement Learning Approach for Smart Farming 

 

openAI Gym, the environment replies 

with rewards, namely, scores. 

We make use of Env, the core gym 

interface, and the predefined methods 

available: reset, step and render. 

Fortunately, openAI Gym provides a 

built-in environment, named „Taxi-v2”, 

but the environment uses only a matrix of 

25 possible agent locations and four 

possible destinations/locations. 

 

In order to extend the locations, a new 

environment is created in openAI Gym. 

For achieving this, the environment is 

registered by calling gym's register() 

function, and by running the command 

pip install –e  that takes as argument the 

location of the setup file where we 

defined the new environment. The 

custom made environment will be 

available with the call of: 

 
env = gym.make('truck-v0') 

env.render() 

 

The focus is to break down the agent’s 

learning experience into episodes. 

Each episode starts by setting the first 

state of the agent randomly selected from 

the distribution. The agent iterates 

through episodes with the scope of 

maximizing the expectation of total 

reward/episode. 

 

For our TruckEnv, we initilize „the 

field”, like this matrix:  

 

 

 
Fig. 3. Field matrix 

 

The state space is represented by 

:”truck_row”,”truck_col”, 

„crop_location”, „silo_destination”. 

 

 

 

For our example, we use a matrix with 5 

possible crop locations and silo destinations. 

So, the total number of states is 6 * 6 [the 

possible positions of the truck in the matrix ] 

* 5[the possible crop locations] * 5 [the silo 

destinations] = 900 possible states; 

When the environment interface is built, the 

initial matrix of states and actions is created.  

In order to view the structure, with the call 

of env.P(), we can see for each of the five 

possible actions the probability, the next 

state in which the agent will be if the action 

at the indicated index is taken, the amount of 

the reward[ based on the type of the action 

and the position], and a boolean value, 

namely, „done", which indicates if the 

episode is successful. 

In the environement, the P structure is 

initialize like this: 

 

P = {state: {action: [] 

   for action in range(number_of_actions)} 

 for state in range(number_of_states)} 

 

We leave the other functions of the 

environment as they are defined in openAI 

gym default environment, because, 

basically, the truck will use the same context  

to train. 

 

For training, the following hyperparameters 

were used:  

 

• alpha, the learning rate as 0.1 

• gamma,  the discount factor  and we 

set like this the importance of the 

future reward as 0.5 

• epsilon,  the quantification of the 

exploration phase 

 

Explaining it in a simple manner, it would 

be the decision of whether to check random 

actions or to make use of the already 

computed values in the Q-table. Epsilon is 

set in the code as 0.1  

 

The number of episodes is set to 100000 for 

the training. We iterate through all the 
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episodes, and we reset the environment at 

each iteration to get a clean step.  

For each step, we check the epsilon value 

against a random value from 0 and 1 and 

decide if the action is a random one or we 

just exploit the already known actions 

that have the greatest value in the Q-

table.  

 

Afterwards, the action is taken and the 

next step becomes the current one, the 

reward and the „done” boolean value are 

actualized along with the Qtable value for 

the specific state and action based on the 

formula described above. 

 

 
 

 

 

For evaluating the performance of the 

agent, we make use of three indicators: 

the average number of steps taken to 

reach the destination, the average number 

of rewards and penalties per move, and 

so, after the training, we iterate through 

the range of episodes until the done 

indicator is true. By selecting the action 

only with the use of the Q-table, we can 

calculate these parameters and observe 

the performance.   

 

 

 
 

 

 

The output is as follows: 

 

 

 
 

Fig. 4. Performance of the agent 

 

 

6 Conclusions 

 

The evolution of Big Data and Machine 

Learning will change the methods of farm 

management and is actually changing the 

research methods. Optimization is definitely 

improved by the prevalence of data and 

rapid estimation of causality relationship of 

inputs is overpassing the traditional 

approaches. Also, the adoption of data-

driven technologies will play a big role in 

conserving resources and expanding the 

returns. Analysis of data from software that 

manages irrigation reduces water 

consumption and impacts environmental 

management. Predictions based on the 

historical data are being replaced with a 

comprehensive analysis of the crops, based 
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on real-time input. Machines can also 

classify and detect plant disease reducing 

costs this way and improving the quality 

of the crops. Progress in machine 

learning has been driven by low-cost 

computation opportunities as well by the 

availability of online resources, data and 

the development of learning algorithms. 
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