
34 Efficient Partitioning of Large Databases without Query Statistics

Efficient Partitioning of Large Databases without Query Statistics
Shahidul Islam KHAN

Department of Computer Science and Engineering (CSE)
Bangladesh University of Engineering and Technology (BUET), Dhaka, Bangladesh

nayeemkh@gmail.com, shahid@grad.cse.buet.ac.bd

An efficient way of improving the performance of a database management system is
distributed processing. Distribution of data involves fragmentation or partitioning,
replication, and allocation process. Previous research works provided partitioning based on
empirical data about the type and frequency of the queries. These solutions are not suitable at
the initial stage of a distributed database as query statistics are not available then. In this
paper, I have presented a fragmentation technique, Matrix based Fragmentation (MMF),
which can be applied at the initial stage as well as at later stages of distributed databases.
Instead of using empirical data, I have developed a matrix, Modified Create, Read, Update
and Delete (MCRUD), to partition a large database properly. Allocation of fragments is done
simultaneously in my proposed technique. So using MMF, no additional complexity is added
for allocating the fragments to the sites of a distributed database as fragmentation is
synchronized with allocation. The performance of a DDBMS can be improved significantly by
avoiding frequent remote access and high data transfer among the sites. Results show that
proposed technique can solve the initial partitioning problem of large distributed databases.

Keywords: Distributed Database, Partitioning, Fragmentation, Allocation, MCRUD matrix

Introduction
A distributed database (DDB) is a

collection of data that logically belongs to
the same system but spreads over the sites of
a computer network. It is not necessary that
database system has to be geographically
distributed. The sites of the distributed
database can have the same network address
and may be in the same room but the
communication between them is done over a
network instead of shared memory. DDB is
an efficient way of improving the
performance of applications that manipulate
large volumes of data. The design of
efficient distributed databases is one of the
major research problems in database and
information technology areas. Primary
concerns of distributed database design are
partitioning the relations or tables, allocating
them in different sites of a distributed
system, and local optimization in each site
[1], [2].
Database partitioning or fragmentation is a
design technique to divide a single relation
or class of a database into two or more
partitions such that the combination of the

partitions provides the original database
without any loss of information. This
reduces the amount of irrelevant data
accessed by the applications of the database,
thus reducing the number of disk accesses.
Fragmentation can be horizontal, vertical or
mixed/hybrid. Horizontal fragmentation
(HF) allows a relation or class to be
partitioned into disjoint tuples or instances.
Vertical fragmentation (VF) partitioned a
relation or class into disjoint sets of columns
or attributes except the repetition of primary
key column. The combination of horizontal
and vertical fragmentations to form mixed or
hybrid fragmentations (MF/ HF) is also
proposed [3]. Allocation is the process of
assigning the fragments of a database on the
sites of a distributed network. The
replication of fragments improves reliability
and efficiency of read-only queries but
increase update cost. The main reasons of
fragmentation of the relations are to
increase locality of reference of the queries,
improve reliability and availability of data
and performance of the system, balance
storage capacities, and minimize

1

Database Systems Journal vol. VII, no. 2/2016 35

communication costs [1]-[4].
1.1 Problem Definition
In distributed database design, the basis of
fragmentation (horizontal, vertical or mixed)
of relations is one of the follows:

 Frequency of different queries
executed in a system at runtime,

 Affinity matrix of minterm
predicates constructed from
combination of predicates

 Attribute affinity matrix constructed
based on the relationship between
different attributes of a table and run
time transactions that access the
attributes

To know actual query frequencies or to
construct above matrices sufficient
experiential data are required that are not
available in most cases at the initial stage of
a distributed database. Moreover, almost all
the previous techniques concentrated only
fragmentation problem and overlooked
allocation problem to reduce the complexity
of the problem. But the overall performance
of a distributed system fragmented by a very
good fragmentation technique can be very
low if proper allocation of the fragments to
the sites of the distributed system cannot be
ensured.
Available techniques developed by the
researchers so far to support fragmentation
cannot provide a solution at the initial level
of a distributed system. They use frequency
of queries executed in a system at runtime,
affinity matrix of minterm predicates
constructed from combination of predicates
or attribute affinity matrix constructed based
on the relationship between different
attributes of a table and run time transactions
that access the attributes as a basis of
fragmentation of the relations. To construct
these matrices sufficient experiential data are
required that are not available in most cases
at the initial stage of a distributed system. So
using currently available techniques for
fragmentation, the database administrator
has to put the whole database in a single site
of the system and perform fragmentation and
allocation after a long period when sufficient
empirical data will be available to him.

During this period facilities of distributed
database cannot be enjoyed. After the
period the database can be fragmented
correctly to some extent and allocated to the
sites with a high communication cost of
transferring a huge amount of data from
central node to all other nodes of the system.
Due to the deficiencies of fragmentation and
allocation techniques existing in the
literature, my research focused
fragmentation and allocation in an integrated
manner. Based on locality of data,
partitioning the database and allocating the
partitions are performed with the objective
of minimizing data transmission costs and
maximizing locality of data
In this paper, I have presented a
fragmentation technique namely Matrix
based Fragmentation (MMF) that is capable
of partitioning relations of a distributed
database properly at the initial stage when
data access statistics and query execution
frequencies are not available. Instead of
using empirical data, I have developed a
matrix namely Modified Create, Read,
Update and Delete (MCRUD) to make
fragmentation decisions. Using our
technique, no additional complexity is added
for allocating the fragments to the sites of a
distributed database as fragmentation is
synchronized with allocation. So the
performance of a DDBMS can be improved
significantly by avoiding frequent remote
access and high data transfer among the
sites. This will improve the bandwidth of the
system as well.

1.2 Contributions of the Paper
 The main contribution is to develop a
fragmentation technique that can
partition relations without empirical
data.

 Relations are fragmented initial with
the help of MCRUD matrix. This
overcomes initial fragmentation
problem of distributed database that is
not properly addressed in other
fragmentation techniques.

36 Efficient Partitioning of Large Databases without Query Statistics

 A very good hit rate (Approximately
90%) is achieved using my proposed
technique for various kinds of
insertion, selection, join, deletion and
other queries.

 In our technique large amount of costly
data transfer using communicational
network can be avoided as fragments
are correctly allocated to different sites
at the initial stage of the system.

The rest of the paper is organized as follows.
In Section 2, a brief review of the research in
horizontal, vertical and mixed fragmentation
technique of distributed database is
presented and limitations of the available
fragmentation techniques are also discussed.
Section 3 describes the details of Matrix
based Fragmentation (MMF) technique In
Section 4, I have presented the results of the
experiments to show the performance of my
proposed technique. Finally, Section 5
concludes the paper and provides
suggestions for future research.

2 Literature Review

2.1Complexity of the problem
The combined problem of fragmentation and
allocation is proven NP-hard [6]. In the case
of Horizontal fragmentation, if n simple
predicates are considered 2n is the number of
horizontal fragments using minterm
predicates. If there are k nodes, the
complexity of allocating horizontal
fragments is O ().
For example, using 6 simple predicates to
perform horizontal fragmentation results in
26 = 64 fragments. To find the optimal
allocation of the fragments in 4 sites one
needs to compare all the 464 ≈ 1039 possible
allocations.
For vertical fragmentation, if a relation has
m non-primary key attributes, the number of
possible fragments: Bell number B (m) ≈
mm. The fragment allocation is of
complexity
O (). Due to the complexity of both
fragmentation and allocation, allocation of
the fragments are often treated

independently than fragmentation of the
database.

2.2 Horizontal Fragmentation
There are two types of horizontal
fragmentation, primary and derived. Primary
horizontal fragmentation of a relation or a
class is performed using predicates of
queries accessing this relation or class, while
derived horizontal fragmentation of a
relation or a class is performed based on
horizontal fragmentation of another relation
or class.
In the context of the relational data model,
existing approaches for horizontal
fragmentation mainly fall into following
three categories [7], [1]:

 minterm-predicate-based approaches:
which perform primary horizontal
fragmentation using a set of minterm
predicates, e.g., [1], [2], [8].

 affinity-based approaches: which, at
first, group predicates according to
predicate affinities and then perform
primary horizontal fragmentation
using conjunctions of the grouped
predicates, e.g., [9] - [12].

 other approaches: approaches other
than minterm predicate or predicate
affinity-based approach, e.g., [13] –
[16].

2.3 Vertical Fragmentation
Vertical fragmentation has been studied
since the 1970s. There are two main
approaches [7]:

 The pure affinity-based approach
takes attribute affinities as the
measure of togetherness of attributes
to fragment attributes of a relation
schema. Research work includes
[17]-[24].

 The cost-driven approach uses a cost
model while partitioning attributes of
a relation schema. Research work
includes [25] - [30].

Initial Vertical Fragmentation
Abuelyaman [30] provided a solution of
initial fragmentation of database using
vertical fragmentation technique namely

n

k 2

mmk

Database Systems Journal vol. VII, no. 2/2016 37

StatPart. To fragment a relation, it starts with
a randomly generated matrix of attribute vs.
queries called the reflexivity matrix. It then
constructs symmetry matrix from the
reflexivity matrix using two equations.
Symmetry matrix is inputted to transitivity
module which uses an algorithm to produce
two set of attributes those will be used to
break the relation into two binary vertical
fragments.
Main two drawbacks of StatPart [30] are:

 It can suggest only two binary
vertical fragments independent of the
number of sites of the distributed
system. So this technique is not
suitable for a distributed system with
more than two allocation sites.

 As it starts with a randomly
generated matrix that represents the
relationship among attributes and
queries, optimum fragmentation
decision cannot be provided using
this algorithm. So it continuously
shifts attributes from one fragment to
another fragment trial and error basis
to improve hit ratio.

Recent research on Horizontal or Vertical
partitioning includes fragmentation of very
large databases, cloud-based systems,
multimedia databases etc. [31]-[35].

2.4 Mixed Fragmentation
Navathe et al. [3] proposed a mixed
fragmentation methodology that
simultaneously applies horizontal and
vertical fragmentation on a relation. The
input of the procedure comprises a predicate
affinity table and an attribute affinity table.
A set of grid cells is created first which may
overlap each other. Then some grid cells are
merged such that total disk accesses for all
transactions can be reduced. Finally, the
overlap between each pair of fragments is
removed using two algorithms for the cases
of contained and overlapping fragments.
Adopting some developed heuristics and
algorithms in [3] to fragmentation in object
oriented databases, Bai˜ao and Mattoso [36]
proposed a design procedure which includes

a sequence of steps: analysis phase, vertical
and horizontal fragmentation. In the first
step, a set of classes that are needed for
horizontal fragmentation, vertical
fragmentation, or non-fragmentation, are
identified. In the second and third steps,
vertical and horizontal fragmentations are
performed on the classes identified in the
first step, using algorithms extended from
the one in [3]. All fragmentation algorithms
are affinity based. The evaluations of the
resulting fragmentation are not based on any
cost model. Bai˜ao et al. [4] considered
mixed fragmentation as a process of
performing vertical fragmentation on classes
first and then performing horizontal
fragmentation on the set of vertical
fragments.

2.5 Allocation
In the literature, allocation problems are first
addressed for file allocation. Chu [37]
presented a simple model for a non-
redundant allocation of files. Casey [56]
proposed a model which allows the
allocation of multiple copies. Queries and
updates are distinguished in the model.
Mahmoud and Riodon [38] proposed a
model for studying file allocation and the
capacity of communication capacities to
obtain an optimized solution which
minimizes storage and communication cost.
Since the early 1980s, data allocation has
been studied in the context of relational
databases. Due to the complexity of the
problem of data allocation, different
researchers make different assumptions to
reduce the size of the problem. Some works
do not consider replication while making a
decision of allocation [39, 40] while some
others do not consider storage capabilities of
network nodes [6, 41].

2.6 Summary
Most of the literature about database
distribution considers fragmentation and
allocation as two different steps even though
they are strongly related problems. Both
fragmentation and allocation take the same
input information to achieve the same

38 Efficient Partitioning of Large Databases without Query Statistics

objectives of improving system
performance, reliability, and availability.
Existing approaches for primary horizontal
fragmentation can be characterized into three
streams, one using minterm predicates, one
using predicate affinity, and a cost-driven
approach using a cost model. Even though
each of the approaches claims to be able to
improve system performance, there is no
evaluation to prove that resulting
fragmentation schemata can indeed improve
the system performance. Horizontal
fragmentation with minterm predicates often
results in a large number of fragments which
will later be allocated to a limited number of
network nodes. Affinity-based horizontal
fragmentation approaches cannot guarantee
to achieve optimal system performance
because the information of data local
requirement is lost while computing
predicate affinities. Cost-driven approaches
use cost models to measure the number of
disk accesses without considering
transportation cost.
For vertical fragmentation, there are two
main approaches existing in the literature:
affinity based and cost-based. The affinity-
based vertical fragmentation approach
originated for centralized databases with
hierarchical memory levels, for which the
number of disk accesses is the main factor
that affects the system performance. Later,
this approach was adapted to distributed
databases for which transportation cost is the
main cost that affects the system
performance. Attribute affinities only reflect
the togetherness of attributes accessed by
applications. Vertical fragmentation based
on affinities may reduce the number of disk
accesses. However, there is no clear proof
that affinity-based vertical fragmentation can
indeed improve data local availability and
thus improve system performance. The cost-
driven approach performs vertical
fragmentation based on a cost model that
measures the number of disk accesses. The

optimal solution chosen by this approach is
the vertical fragmentation schema that has
the fewest number of disk accesses.
However, there is no fragmentation
approach, for both horizontal and vertical
fragmentation, taking data locality into
consideration.
Due to the complexity of the allocation
problem, it is infeasible to find optimal
solutions. Researchers provided heuristic
solutions with many assumptions to reduce
the complexity of the problem. The
assumption that fragmentation is completed
properly is not reasonable. Because it is not
possible to solve the fragmentation problem
independently from the allocation problem
as the optimal fragmentation can only be
achieved with respect to the optimal
allocation of fragments.

3 Matrix based Fragmentation Technique
(MMF)
To solve the problem of taking proper
fragmentation decision at the initial stage of
a distributed database, I have developed a
new partitioning technique based on locality
precedence of the attributes. Instead of using
empirical data, I have developed Modified
Create, Read, Update and Delete (MCRUD)
matrix to obtain fragmentation decisions.
The details of the technique are discussed in
the following sections.

3.1 CRUD Matrix
A data-to-location CRUD matrix is a table in
which rows indicate attributes of the entities
of a relation and columns indicate locations
of the applications [42]. It is used by the
system analysts and designers in the
requirement analysis phase of system
development life cycle for making a decision
of data mapping to different locations [42],
[43]. An example of a traditional CRUD
Matrix is shown in the Fig. 1.

Database Systems Journal vol. VII, no. 2/2016 39

 Entity

Use Case

Order Chemicals Requestor Vendor Catalog

Place Order C R R R
Change Order U, D R R
Manage Chemical
Inventory

 C, U, D

Report on Orders R R R
Edit Requesters C, U

Fig. 1 Example of a CRUD Matrix adopted from [44]

3.2 MCRUD Matrix
I have modified the existing CRUD matrix
according to our requirement of horizontal
fragmentation and name it Modified Create,
Read, Update, and Delete (MCRUD) matrix.
It is a table constructed by placing predicates
of attributes of a relation on the row side and
applications of the sites of a DDBMS on the
column side. I have used MCRUD matrix to
generate attribute locality precedence (ALP)
table for each relation. An example of an

MCRUD Matrix is shown in Fig. 2. In this
example, the distributed system has three
sites and one application is running on each
site. Entity set, attribute, and predicate are
denoted by e, a and p respectively. If an
application of a site has chances to perform
create or read or update or delete operation
to an attribute’s certain predicate then C or R
or U or D will be written in the intersecting
cell of the matrix.

 Site.Application

Entity.Attribute.Predicates

Site1 Site2 Site3

Ap1 Ap1 Ap1

e.a1.p1 CRUD R R
e.a1.p2 RU CRUD CRU
e.a2p1 R R CRUD
e.a2.p2 R RU R
e.a3.p1 CRUD R
e.a3.p2 R R CRUD

Fig. 2 Example of a MCRUD Matrix

3.3 Attribute Locality Precedence (ALP)
In my developed technique, a relation is
fragmented according to the locality of
precedence of its attributes. Attribute
Locality Precedence (ALP) as the value of
importance of an attribute with respect to the
sites of a distributed database [45], [46]. A
relation in a database contains different
types of attributes those describe properties
of the relation. But the important thing is
that the attributes of a relation do not have
same importance with respect to data
distribution in different sites. For example in

Fig. 2, there are three attributes a1, a2 and a3.
Among them, one may be more significant
than others to increase data locality and to
reduce remote access in the case of
fragmentation. According to the above
importance, we can calculate locality
precedence of each attribute for each relation
and construct ALP table for the relations.

3.4 ALP Table
ALP values of different attributes of a
relation will be placed in a table called ALP
table. ALP table will be constructed by

40 Efficient Partitioning of Large Databases without Query Statistics

database designer for each relation of a
DDBMS at the time of designing the
database with the help of MCRUD matrix
and cost functions. The algorithm that will
be used to calculate ALP and to construct
ALP table is given in Algorithm I. An
example of ALP table for the MCRUD
matrix of Fig. 2 is shown in Table 1.

Algorithm I: ALP calculation
Input: MCRUD of a relation
Output: ALP table of the
relation
for (i =1; I <=
TotalAttributes; i++){
 for (j =1; j <=
TotalPredicates[i]; j++){
 MAX[i][j] = 0;
 for (k =1; k <=
TotalSites; k++){
for (r =1; r <=
TotalApplications[k]; r++){ /*
Calculating sum of all
applications’ cost of predicate j
of attribute i at site k */
 C[i][j][k][r] = fc*C + fr*R
+ fu*U + fd*D
 S[i][j][k] + =
C[i][j][k][r]
If S[i][j][k] > MAX[i][j] {
/*Find out at which site cost of

predicate j is maximum*/
 MAX[i][j] =
S[i][j][k]
 POS[i][j] =
k
 SumOther = 0
 Count =0
for (r =1; r <= A[i][j][k];
r++){
If (r!=k)
SumOther + = S[i][j][r]
If S[i][j][r]>MAX[i][j]/2
/* selecting the sites where
 Replicate[Count]=r
replication of a fragment
 Count++
 will be
performed */
 ALPsingle[i][j] =
MAX[i][j] – SumOther
/* actual cost for predicate j
of attribute i */
ALP[i] = 0
for (j =1; j <=
TotalPredicates[i]; j++)
/*calculating total cost for
attribute i (locality
precedence)*/
 ALP[i] + =
ALPsingle[i][j]

Table 1 Example of an ALP table

Entity. Attribute Name Precedence

e.a1 4

e.a2 8

e.a3 13

3.5 ALP Cost Functions
I treated cost as the effort of access and
modification of a particular attribute of a
relation to an application from a particular
site. For calculating precedence of an
attribute of a relation, I take the MCRUD
matrix of the relation as an input and use the
cost functions of [45], [46].

Using the form of Table 2, more accurate
estimation of the frequency of create, read,
update and delete operation by an application
can be possible. This form will be used at the
requirement analysis phase of a DDBMS
design.

Database Systems Journal vol. VII, no. 2/2016 41

Table 2 Information Need Analysis Form
 Access Statistics

Users

Site k
Application r
attributei. predicatej
Create Read Update Delete

U1 x

U2 x x

U3 x x x x

U4 x

.

.

.

Un x x x

3.6 Fragmentation based on MCRUD
Matrix
Here, I am describing MMF technique in
details. The main functionalities of the
technique are shown in Fig. 3 adopted from
[46]. There are n numbers of relations in the
database named R1, R2,…, Rn. First n
number of MCRUD matrices will be
constructed by the system designer at design
time. These n matrices will be the input of
our technique. Then using the cost functions,

n number of ALP tables ALP (R1), ALP
(R2), …, ALP (Rn) will be constructed. Then
in the next step, n numbers of predicate sets
named P1, P2, …, Pn will be generated for
attributes with highest ALP value for each
ALP table. Each predicate set Pi will contain
m numbers of predicates. According to the
predicate sets, each of the n relations Ri will
be fragmented into m fragments and allocate
to the m sites.

Following algorithm, Algorithm II has been
used to implement MMF technique.

Algorithm II: FragmentationAllocation
Input: Total number of sites: S

42 Efficient Partitioning of Large Databases without Query Statistics

= {S1, S2,… ,Sn}
 Relation to be fragmented:
R
 Modified CRUD matrix:
MCRUD[R]
Output: Fragments F = {F1, F2,
F3,…, Fn}
Step 1: Construct ALP[R] from
MCRUD[R] based on Cost functions
Step 2: For the significant
highest valued attribute of ALP
table

a. Generate predicate set
P={ P1, P2, … ,Pm }

b. Fragment R using P as
selection predicate

)(Rpp
c. ALLOCATE F to S

Step 3: For non-significant-
highest-value (Max-
Highest<1.5*2nd-Highest) in
ALP[R]

a. REPLICATE R to

n

j
jS

1 if R
is an entity set

b. Derive Horizontally
Fragment R using its
owner relation if R is
a relationship set

Algorithm II takes a relation to be

fragmented, MCRUD matrix of the relation
and number of allocation sites as input. It
finally produces fragments and allocates
them in the sites of DDBMS.

3.7 Implementation of other
Fragmentation Types
In this paper, I have performed the
fragmentation of the relations of distributed
database using horizontal fragmentation
technique. This is because of improving
performance significantly of a distributed
database, we have to maximize locality of
data or hit rate of the queries. That is query
generating in one site access data of that site
only. This will reduce remote access cost
and cost of data transfer among the sites.
The locality of data can be achieved more
using horizontal fragmentation than vertical
fragmentation.
MMF technique is not limited to horizontal
fragmentation only. If we slightly modify the
MCRUD matrix that is if we place attributes
of a relation on the row side and applications
of the sites of a DDBMS on the column side
and modifying the cost functions we can
produce vertical fragmentation using MMF
technique. Modification of MCRUD matrix
for vertical fragmentation is shown in Fig. 4:

 Site.Application

Entity.Attribute

Site1

Site2 Site3

Ap1 Ap2 Ap3 Ap1 Ap2 Ap3 Ap1 Ap2 Ap3

Accounts .AccountNo C RU R
Accounts.Type CRD RU RUD R
.
.

Accounts.Balance R R CRUD R
Accounts.BrName CRUD RU CRUD R R

Fig. 4 MCRUD Matrix for Vertical Fragmentation

Like other Hybrid or Mixed fragmentation
techniques, MF can be performed in our
MMF technique by applying vertical
fragmentation followed by horizontal
fragmentation or vice versa. If it worth
mentioning that MF is only applied in
distributed databases if the relations have too
many attributes and a huge number of

records in the relations.

4 Results and Discussion
The objective of my experimental works is
to verify the applicability and feasibility of
MMF, the proposed fragmentation technique
based on MCRUD matrix. The experimental
evaluation has been performed with

Database Systems Journal vol. VII, no. 2/2016 43

synthetic data and a reasonable number of
queries.

4.1 Experimental Environment
To validate proposed technique, I have
implemented a distributed banking database

system in the post-graduate lab of BUET
using DELL workstations. I have used
Windows XP operating system and Oracle
10g for database creation. Schema of the
implemented database is shown in Fig. 5.

Fig. 5 Relation schema

Initially number of sites of the distributed
system is three as shown in Fig. 6. In each
site, three applications were executed.

 Application 1 deals with Customer
related information.

 Application 2 deals with Account
related information.

 Application 3 deals with Loan related
information.

4.2 Construction of MCRUD Matrix
I have constructed the MCRUD matrix for
each of the eight relations of Fig. 5 in the
requirement analysis phase. An MCRUD
matrix is constructed for each relation by
placing predicates of attributes in the row
side

and applications of the sites of a DDB on the
column side of a table in the requirement
analysis phase of system development. Two
of the matrices constructed are shown in
Table 3 - 4.

Table 3 MCRUD matrix of Branch relation

Site.Application

Entity.Attribute.Predicates

Site1 Site2 Site3

Ap1 Ap2 Ap3 Ap1 Ap2 Ap3 Ap1 Ap2 Ap3
Branch.BrNo=B01 R R R R

Branch.BrNo=B02 R R R

Branch.BrNo=B03 R R

44 Efficient Partitioning of Large Databases without Query Statistics

Branch.BrName=Corporate R R

Branch.BrName=Loc1 R R R
Branch.BrName=Loc2 R R R R
Branch.BrAddress=? R

Table 4 MCRUD matrix of Loan relation

Site.Application

Entity.Attribute.Predicates

Site1 Site2 Site3

Ap1 Ap2 Ap3 Ap1 Ap2 Ap3 Ap1 Ap2 Ap3

Loan .LnNo<10000 RU R CRUD RU R CRUD R R CRUD

Loan .LnNo>=10000 R R CRUD R RU CRUD R RU CRUD

Loan.LnType=SME R RU RU R CRUD R RU

Loan.LnType=HOME RU RU CRUD R RU R RU

Loan.LnType=CAR R RU R RU RU CRUD

Loan.Amount<50000 R CRUD R CRUD R CRUD

Loan.Amount=50000:100000 R R CRUD R CRUD R CRUD

Loan.Amount>100000 R CRUD R CRUD R CRUD

4.3 Calculation of ALP Values and
Construction of ALP Tables
I have calculated locality precedence of each
attribute from the MCRUD matrix of each
relation using attribute locality precedence
(ALP) calculation algorithm. Using the ALP
values I have constructed ALP table for each
relation. ALP table is a 2D array where
attributes of a relation and its locality
precedence is stored. For each attribute,

Create, Read, Update, and Delete operation
over its predicates from different
applications of different sites is calculated
and sum up to have locality precedence of
that attribute. An attribute with the highest
precedence implies that taking predicates of
this attribute as selection predicate for
horizontal fragmentation will maximize the
hit ratio. It is depicted in Table 5.

Table 5 Precedence calculation for LnType attribute of Loan relation

Attribute
Name

Predicates Precedence
in Site 1

Precedence
in Site 2

Precedence
in Site 3

Precedence
of Predicate

ALP Decision

LnType

LnType =
SME

5 13 5 13-5-5=3
3+6+2=11

Fragment
in Site 2

LnType =
HOME

16 5 5 16-5-5=6 Fragment
in Site 1

LnType =
CAR

5 5 12 12-5-5=2 Fragment
in Site 3

Table 6 ALP table of Loan relation
Attribute Name Precedence

LnNo -20

LnType 11

LnAmount -26

Database Systems Journal vol. VII, no. 2/2016 45

4.4 Generation of Predicate Set and
Fragmentation of the Relations
Predicate set was generated for the attributes
with highest locality precedence of the
relations respectively. These predicate sets
were used to fragment the relations.
PLoan ={LnType=SME, LnType=HOME ,
LnType=CAR }
PCustomer ={BrNo=B01, BrNo=B02,
BrNo=B03}
PAccounts ={AccType=Ind, AccType=Cor}
PAccofBranch ={BrNo=B01, BrNo=B02,
BrNo=B03}
PLnofBranch ={BrNo=B01, BrNo=B02,
BrNo=B03}
As for AccCust and LnCust relations, no
attribute has significant higher precedence
than other attributes, so predicate set was not
generated for the relations. Instead these
relations are to be fragmented derived
horizontally with the help of their mother
relation.
For Horizontal fragmentation of Customer
relation, following queries are used:
QCustomer1 =Select * from Customer
where BrNo=B01;
QCustomer2 =Select * from Customer
where BrNo=B02;
QCustomer3 =Select * from Customer
where BrNo=B03;
For Horizontal fragmentation of Loan
relation, following queries are used:
QLoan1 =Select * from Loan where
LnType=SME;
QLoan2 =Select * from Loan where
LnType= HOME;
QLoan3 =Select * from Loan where
LnType= CAR;
For Horizontal fragmentation of Accounts
relation, following queries are used:
QAccounts1 =Select * from Accounts
where AccType=Ind;
QAccounts2 =Select * from Accounts
where AccType=Cor;
For Horizontal fragmentation of
AccofBranch relation, following queries are
used:
QAccofBranch1 =Select * from AccofBranch
where BrNo=B01;
QAccofBranch2 =Select * from AccofBranch
where BrNo=B02;
QAccofBranch3 =Select * from AccofBranch
where BrNo=B03;
For Horizontal fragmentation of LnofBranch
relation following queries are used:

QLnofBranch1 =Select * from LnofBranch
where BrNo=B01;
QLnofBranch2 =Select * from LnofBranch
where BrNo=B02;
QLnofBranch3 =Select * from LnofBranch
where BrNo=B03;
For Horizontal fragmentation of AccCust
relation, following queries are used:
QAccCust1 =Select AccNo, Cid from
AccCust, Customer where AccCust.Cid
= Customer.Cid and
Customer.BrNo=B01;
QAccCust2 =Select AccNo, Cid from
AccCust, Customer where AccCust.Cid
= Customer.Cid and
Customer.BrNo=B02;
QAccCust3 =Select AccNo, Cid from
AccCust, Customer where AccCust.Cid
= Customer.Cid and
Customer.BrNo=B03;
For Horizontal fragmentation of LnCust
relation, following queries are used:
QLnCust1 =Select LnNo, Cid from
LnCust, Customer where LnCust.Cid =
Customer.Cid and Customer.BrNo=B01;
QLnCust2 = Select LnNo, Cid from
LnCust, Customer where LnCust.Cid =
Customer.Cid and Customer.BrNo=B02;
QLnCust3 = Select LnNo, Cid from
LnCust, Customer where LnCust.Cid =
Customer.Cid and Customer.BrNo=B03;
Branch relation was not fragmented as it is a
very small relation and most access to its
records is by read operation. Instead, Branch
relation was replicated to all the sites of the
DBDS.
In this way all the relation schemas of the
distributed banking system of Fig. 5 were
fragmented using the above queries and
allocated to the three computers (sites).

4.5 Queries for Performance analysis of
Matrix based Fragmentation (MMF)
I have executed twenty queries in each site
with a total of sixty selected queries in the
distributed system according to Pareto
Principle often referred as 80/20 rule [47] –
[49] to see the performance of MMF. The
queries were selected from the following
query domain to accomplish enough
variation of real database system:

 Insertion e.g. Insert into RRR values
(xxx, yyy, zzz);

 Selection (Point) e.g. Select A1, A2...

46 Efficient Partitioning of Large Databases without Query Statistics

An from RRR where xxx= P
 Selection (Range) e.g. Select A1, A2...

An from RRR where xxx< BBB
 Selection (Join) e.g. Select A1, A2 ...

An from R1, R2 where R1.Ai=R2.Aj
 AND R1.Ak=CCC

 Selection (Aggregation) e.g. Select
Sum (AA) from RRR where P

 Update e.g. Update RRR set Ai = xxx
where Aj = yyy

 Deletion e.g. Delete * from RRR

where P

I have defined hit as a result of a query of any
type accessed records of a local fragment of
the site where the query was initiated and
miss as a result of a query of any type
accessed records of one or more remote
fragments of other sites. Partial results of my
experiments are shown in Table 7 – 8 and
Fig. 7 – 8:

100%

75% 75%
83.33%

0%

25% 25%
16.67%

0%

20%

40%

60%

80%

100%

Site 1 Site 2 Site 3 Average

P
er

ce
n

ta
g

e
o

f
H

it
 /

 M
is

s

 Hit

Miss

Fig. 7 Hit Miss ratio for Loan relation

100%

50%

100%

83.33%

0%

50%

0%

16.67%

0%

20%

40%

60%

80%

100%

Site 1 Site 2 Site 3 Average

P
e
rc

e
n

ta
g

e
 o

f
H

it
 /

 M
is

s

Hit

 Miss

Fig. 8 Hit Miss ratio for Accounts relation

From Table 7 we can see that all the queries
of Site 1 accessed records from local
fragment of Loan relation. So hit ratio in Site
1 is 100%. We also see that 75% queries
executed at Site 2 and Site 3 accessed

records of local fragment and 25% queries
accessed records of fragment stored on other
(remote) site rather than query generation
site. Average hit ratio for Loan relation is
83.33%.

Table 7 Hit Miss ratio for Loan

Site Percentage
of Hit

Percentage
of Miss

Site 1 100% 0%
Site 2 75% 25%
Site 3 75% 25%
Average 83.33% 16.67%

Database Systems Journal vol. VII, no. 2/2016 47

From Table 8 we can see that all the queries
of Site 1 and Site 3 accessed local fragment
of Accounts relation.
So hit ratio in Site 1 and 3 is 100%. 50% of
queries executed at Site 2 accessed records

of the local fragment and 50% queries
accessed records of fragment stored on other
(remote) site rather than Site 2. Average hit
ratio for Accounts relation is 83.33%.

Table 8 Hit Miss ratio for Accounts

Site Percentage of Hit Percentage of Miss
Site 1 100% 0%
Site 2 50% 50%
Site 3 100% 0%
Average 83.33% 16.67%

Table 9 shows the overall performance of
the distributed system after fragmenting the
relations using MMF technique. We can see
that after fragmentation and allocation using
MMF technique, 85.71% of the queries

generated in any site accessed records of
only that site and remote access reduced to
14.29%. This is definitely a significant
achievement.

Table 9 Overall System Performances of MMF

Site
Name

Queries
executed

Accessed
fragment
stored in
local site

Accessed
fragment
stored in
remote
site

Percentage
of Hit

Percentage
of Miss

Site 1 20 19 1 92.86 % 7.14 %
Site 2 20 16 3 78.57% 21.43%
Site 3 20 17 2 85.71% 14.29%
DDBMS 60 52 6 86.6 % 13.4%

4.6 Comparison with other Techniques
I have named the techniques deals with
fragmentation problem of distributed
database without addressing the initial stage
problem as Techniques Without Initial
Fragmentation (TWIF) as in [1] – [30].
TWIF first store the relations of a distributed
database in a single site of the distributed
system as a centralized database. The other
sites where the database is not stored, access
the database with various type of queries
using remote network connection of the
system. Information about attribute,
predicate access pattern and frequencies of
access by different queries from different
sites are gathered in tables called Attribute
Usage Matrix (AUM) or Predicate Usage
Matrix (PUM) or similar tables. After a
certain period when sufficient statistical data

are gathered for calculating the relationship
(known as affinity) of an attribute or
predicate with the transaction of sites,
Attribute Affinity Matrix (AAM) or
Predicate Affinity Matrix (PAM) are
generated using Bond Energy algorithm or
similar algorithm. From AAM and PAM,
vertical and horizontal fragmentation
decision is made respectively. Then
produced fragments are to be stored in the
sites of the distributed database though
almost all TWIF ignore allocation of the
fragments to reduce complexity.
I have implemented the above model in the
lab and execute the same forty-two queries
those were used to test our technique with
the assumption that at the initial stage the
centralized database is stored at Site 1. Table
10 shows the overall system performance of

48 Efficient Partitioning of Large Databases without Query Statistics

TWIF before DDBMS is fragmented and
allocated to sites. We can see that during a
long period before reasonable amount of
statistical record access frequencies by
transactions are available for constructing
attribute affinity matrix or predicate affinity

matrix and to fragment and allocate the
database among the three sites, percentage of
hit of the overall system is only 33.33%
which is much less in comparison with our
achieved 85.71% hit rate.

Table 10 Overall System Performance of TWIF
Site Name Queries

executed
Access fragment stored
in local site

Access fragment
stored in remote
site

Percentage of
Hit

Percentage of
Miss

Site 1 20 20 0 100% 0%
Site 2 20 0 14 0% 100%
Site 3 20 0 14 0% 100%

DDBMS 60 20 28 33.33% 66.66%

4.7 Impact of Site Number Increase
Now we want to experiment the
generalization of MMF so that we can verify
if our technique is applicable to any number
of sites of distributed system. I have

increased a total number of sites to four at
design time by adding a local branch of
DBDB named Loc3 at Site 4. This situation
is depicted in Fig. 9

Fig. 9 DBDB with four sites

I have constructed the MCRUD matrix of
Loan relation for four sites with three

applications running on each site. It is shown
in Table 11 below:

Table 11 MCRUD matrix of Loan relation for four sites

Site.Application

Entity.Attribute.Predicate
s

Site1 Site2 Site3 Site4

Ap
1

Ap
2

Ap3 Ap
1

Ap
2

Ap3 Ap
1

Ap
2

Ap3 Ap
1

Ap
2

Ap3

Loan .LnNo<10000 RU R CRU
D

RU R CRU
D

R R CRU
D

RU R CRU
D

Loan .LnNo>=10000 R R CRU
D

R RU CRU
D

R RU CRU
D

R RU CRU
D

Loan.LnType=SME R RU RU R CRU
D

R RU RU CRU
D

Loan.LnType=HOME RU RU CRU
D

R RU R RU R RU

Loan.LnType=CAR R RU R RU RU CRU
D

RU R CRU
D

Database Systems Journal vol. VII, no. 2/2016 49

Loan.Amount<50000 R CRU
D

R CRU
D

R CRU
D

RU R CRU
D

Loan.Amount=50000:100
000

R R CRU
D

R CRU
D

R CRU
D

R R CRU
D

Loan.Amount>100000 RU R CRU
D

R CRU
D

R CRU
D

R RU

From Table 11, I have calculated ALP table
for Loan relation shown in Table 12. The
process of how fragmentation and

replication decision is made in four sites can
be understood from Table 13.

Table 12 ALP table of Loan relation with four sites

Attribute Name Precedence

LnNo -46

LnType -17

LnAmount -42

Table 13 Precedence calculation and fragmentation decision for Loan relation

Attribute
Name

Predicates Precedence
in Site 1

Precedence
in Site 2

Precedence
in Site 3

Precedence
in Site 4

Decision

LnType

LnType =
SME

5 13 5 12 Fragment
in Site 2
Replica
in site 4

LnType =
HOME

16 5 5 5 Fragment
in Site 1

LnType =
CAR

5 5 12 13 Fragment
in Site 4
Replica
in site 3

Predicate set is generated for the attribute
LnType of Loan relation.
PLoan ={LnType=SME, LnType=HOME ,
LnType=CAR }
For Horizontal fragmentation of Loan
relation, following queries were used:
QLoan1 =Select * from Loan where
LnType=HOME;
QLoan2 =Select * from Loan where
LnType= SME;
QLoan3 =Select * from Loan where
LnType= CAR;

QLoan4.1=Select * from Loan where
LnType=SME;
QLoan4.2 =Select * from Loan where
LnType= CAR;
I have executed same queries as previous in
four sites of DBDS to check the impact of
site addition on the hit-miss ratio. The result
is shown in Table 14 and Fig 10.
We can see that average hit ratio is 81.25%
that is very close to our previous result
83.33% achieved for three sites.

50 Efficient Partitioning of Large Databases without Query Statistics

Table 14 Performance table of MMF for Loan relation distributed in four sites
Site Percentage of

Hit
Percentage of
Miss

Site 1 100% 0%
Site 2 75% 25%
Site 3 75% 25%
Site 4 75% 25%
Average 81.25% 19.75%

Fig. 10 shows the performance of MMF and
TWIF with the increase of a number of sites
in the distributed system. We can see that
MMF shows better and quite steady

performance as sites increases from three to
five. In the same time, performance of TWIF
falls gradually as new sites are added to the
system.

0
10
20
30
40
50
60
70
80
90

100

#Sites: 3 #Sites: 4 #Sites: 5

P
e
rc

e
n

ta
g

e
 o

f
H

it

Hit (CMF)
Hit (TWIF)

Fig. 10 Comparison of Hit ratio between MMF and TWIF with increasing number of sites

4.8 Summary
From the above result, we can see that our
technique has clearly outperformed the
technique stated in [30]. Our fragmentation
technique achieved a very good hit rate
which is approximately 84%. As other
techniques described in [1] – [29] could not
provide solutions for initial state of the
distributed system, using TWIF initial
performance (hit ratio) of the system is only
33.33%. After a long period when sufficient
data for fragmenting the centralize database
were available, hit rate of TWIF increased
significantly as much as 91.66% but in the
price of high transfer cost incurred for
transferring data among the sites of the
distributed system using communication
network. Another thing is to mention that
MMF achieves a steady hit rate over 80%
and TWIF’s performance falls gradually
from 33.33% to 20% with the increase of a
number of sites of DBDS from three to five.

I have increased the number of sites in the
system up to ten and found similar results.

7 Conclusions
Making proper fragmentation of the relations
and allocation of the fragments is a major
research area in distributed systems. Many
techniques have been proposed by the
researchers using empirical knowledge of
data access by different queries and
frequencies of queries executed in different
sites of a distributed system. But proper
fragmentation and allocation at the initial
stage of a distributed database have not yet
been addressed. In this paper, I have
presented a fragmentation technique to
partition relations of a distributed database
properly at the initial stage when no data
access statistics and query execution
frequencies are available. Instead of using
empirical data, I have developed a matrix
namely Modified Create, Read, Update and

Database Systems Journal vol. VII, no. 2/2016 51

Delete (MCRUD) to make fragmentation
decisions. Using our technique no additional
complexity is added for allocating the
fragments to the sites of a distributed
database as fragmentation is synchronized
with allocation. So the performance of a
DDBMS can be improved significantly by
avoiding frequent remote access and high
data transfer among the sites.

Acknowledgment
The Author is grateful to Dr. Abu Sayed Md.
Latiful Hoque, Professor, Dept. of Computer
Science and Engineering, Bangladesh
University of Engineering and Technology
(BUET) for his guidance.

References
[1] Ozsu, M. T., and Valduriez, P.

Principles of Distributed Database
Systems. Prentice-Hall, New Jersey,
1999.

[2] Ceri, S., and Pelagatti, G. Distributed
Databases Principles and System.
McGraw- Hill, New York, 1984.

[3] Navathe, S., Karlapalem, K., and Ra, M.
A mixed fragmentation methodology for
initial distributed database design.
Journal of Computer and Software
Engineering 3, 4 (1995), 395–426.

[4] Bai˜ ao, F., Mattoso, M., and Zaverucha,
G. A distribution design methodology
for object dbms. Distributed and Parallel
Databases 16, 1 (2004), 45–90.

[5] Tamhankar, A. M., and Ram, S.
Database fragmentation and allocation:
An integrated methodology and case
study. IEEE Transactions on Systems
Management 28, 3 (1998), 194–207.

[6] Blankinship, R., Hevner, A. R., and Yao,
S. B. An iterative method for distributed
database design. In Proceedings of the
17th International Conference on Very
Large Data Bases (1991), G. M.
Lohman, A. Sernadas, and R. Camps,
Eds., Morgan Kaufmann, pp. 389–400.

[7] Ma, H. “Distribution design for complex
value databases” Doctoral thesis,
Department of Information Systems,
Massey University, 2007.

[8] Ceri, S., Negri, M., and Pelagatti, G.
Horizontal data partitioning in database
design. In Proceedings of the 1982
ACM SIGMOD international
conference on Management of data
(1982), ACM Press, pp. 128–136.

[9] Zhang, Y. On horizontal fragmentation
of distributed database design. In
Advances in Database Research (1993),
M. Orlowska and M. Papazoglou, Eds.,
World Scientific Publishing, pp. 121–
130.

[10] Ra, M. Horizontal partitioning for
distributed database design. In
Advances in Database Research (1993),
M. Orlowska and M. Papazoglou, Eds.,
World Scientific Publishing, pp. 101–
120.

[11] Cheng, C.-H., Lee, W.-K., and Wong,
K.-F. A genetic algorithm-based
clustering approach for database
partitioning. IEEE Transactions on
Systems, Man, and Cybernetics, Part C
32, 3 (2002), 215–230.

[12] Mahboubi H. and Darmont J.
“Enhancing XML Data Warehouse
Query Performance by Fragmentation”
ACM SAC, 2009, pp.1555-1562.

[13] Chang, S.-K., and Cheng, W.-H. A
methodology for structured database
decomposition. IEEE Transactions on
Software Engineering (TSE) 6, 2 (1980),
205–218.

[14] Shin, D. G., and Irani, K. B. Partitioning
a relational database horizontally using
a knowledge-based approach. SIGMOD
Record 14, 4 (1985), 95–105.

[15] Shin, D.-G., and Irani, K. B.
Fragmenting relations horizontally using
a knowledgebased approach. IEEE
Transactions on Software Engineering
(TSE) 17, 9 (1991), 872–883.

[16] Khalil, N., Eid, D., and Khair, M.
Availability and reliability issues in
distributed databases using optimal
horizontal fragmentation. In Database
and Expert Systems Applications
(DEXA) (1999), T. J. M. Bench-Capon,
G. Soda, and A. M. Tjoa, Eds.,vol. 1677

52 Efficient Partitioning of Large Databases without Query Statistics

of Lecture Notes in Computer Science,
Springer, pp. 771–780.

[17] Hoffer, J. A., and Severance, D. G. The
use of cluster analysis in physical
database design. In Proceedings of the
First International Conference on Very
Large Data Bases (VLDB) (1975), pp.
69–86.

[18] Navathe, S. B., Ceri, S., Wiederhold, G.,
and Dour, J. Vertical partitioning
algorithms for database design. ACM
Transactions on Database Systems
(TODS) 9, 4 (1984), 680–710.

[19] Navathe, S. B., and Ra, M. Vertical
partitioning for database design: A
graphical algorithm. SIGMOD Record
14, 4 (1989), 440–450.

[20] Lin, X., and Zhang, Y. A new graphical
method of vertical partitioning in
database design. In Proceedings of the
4th Australian Database Conference
(ADC) (1993), M. P. P. Maria E.
Orlowska, Ed., World Scientific, pp.
131–144.

[21] Ma, H., Schewe, K.-D., and Kirchberg,
M. A heuristic approach to vertical
fragmentation incorporating query
information. In Proceedings of the 7th
International Baltic Conference on
Databases and Information Systems
(DB&IS), IEEE Computer Society Press,
2006, pp. 69–76.

[22] AlFares M. et al, “Vertical Partitioning
for Database Design: A Grouping
Algorithm”, International Conference
on Software Engineering and Data
Engineering (SEDE), 2007, pp. 218-223.

[23] Ngo T.H., “New Objective Function for
Vertical Partitioning in Database
System” In Proceedings of the
SYRCODIS, 2008.

[24] Runceanu A. “Fragmentation in
Distributed Databases”, Innovations and
Advanced Techniques in Systems,
Computing Sciences and Software
Engineering, Springer, 2008, pp. 57–62.

[25] Cornell, D., and Yu, P. A vertical
partitioning algorithm for relational
databases. In International Conference
on Data Engineering (1987), pp. 30–35.

[26] Cornell, D. W., and Yu, P. S. An
effective approach to vertical
partitioning for physical design of
relational databases. IEEE Transactions
on Software Engineering 16, 2 (1990),
248–258.

[27] Chu, P.-C. A transaction oriented
approach to attribute partitioning.
Information Systems 17, 4 (1992), 329–
342.

[28] Chakravarthy, S., Muthuraj, J.,
Varadarajan, R., and Navathe, S. B. An
objective function for vertically
partitioning relations in distributed
databases and its analysis. Distributed
and Parallel Databases 2, 2 (1994), 183–
207.

[29] Son, J. H., and Kim, M. H. An adaptable
vertical partitioning method in
distributed systems. Journal of Systems
and Software 73, 3 (2004), 551–561.

[30] Abuelyaman E. S. “An Optimized
Scheme for Vertical Partitioning of a
Distributed Database” International
Journal of Computer Science and
Network Security, VOL.8 No.1, January
2008, pp 310-316.

[31] Raouf, A. E. A., Badr, N. L., & Tolba,
M. F. (2014). Dynamic distributed
database over cloud environment.
In International Conference on
Advanced Machine Learning
Technologies and Applications (pp. 67-
76). Springer International Publishing.

[32] Rodríguez-Mazahua, L., Alor-
Hernández, G., Abud-Figueroa, M. A.,
& Peláez-Camarena, S. G. (2014).
Horizontal Partitioning of Multimedia
Databases Using Hierarchical
Agglomerative Clustering. In Mexican
International Conference on Artificial
Intelligence (pp. 296-309). Springer
International Publishing.

[33] Harikumar, S., & Ramachandran, R.
(2015). Hybridized fragmentation of
very large databases using clustering.
In Signal Processing, Informatics,
Communication and Energy Systems
(SPICES), 2015 IEEE International
Conference on (pp. 1-5). IEEE.

Database Systems Journal vol. VII, no. 2/2016 53

[34] Hababeh, I., Khalil, I., & Khreishah, A.
(2015). Designing high performance
web-based computing services to
promote telemedicine database
management system. IEEE Transactions
on Services Computing, 8(1), 47-64.

[35] Hess, H. (2016). Evaluating Domain-
Driven Design for Refactoring Existing
Information Systems (Doctoral
dissertation, Ulm University).

[36] Bai˜ ao, F., and Mattoso, M. A mixed
fragmentation algorithm for distributed
object oriented databases. In
Proceedings of the International
Conference Computing and Information
(ICCI) (1998), pp. 141–148.

[37] Chu, W. W. Optimal file allocation in a
multiple computer system. IEEE
Transactions on Computers 18, 10
(1969), 885–889.

[38] Casey, R. G. Allocation of copies of
files in an information network. In
Proceedings of AFIPS SJCC (1972), vol.
40, AFIPS Press, pp. 617–625.

[39] Mahmoud, S., and Riordon, J. S.
Optimal allocation of resources in
distributed information networks. ACM
Transactions on Database Systems
(TODS) 1, 1 (1976), 66–78.

[40] Ahmad, I., Karlapalem, K., Kwok, Y.-
K., and So, S.-K. Evolutionary
algorithms for allocating data in
distributed database systems.
Distributed Parallel Databases 11, 1
(2002), 5–32.

[41] Menon, M.-S. Allocating fragments in
distributed databases. IEEE

Transactions on Parallel and Distributed
Systems 16, 7 (2005), 577–585.

[42] Surmsuk P. “The integrated strategic
information system planning
methodology”, IEEE Computer Society
Press, 2007, pp. 467-475.

[43] Whitten J. et al. “Systems Analysis and
Design Methods”, 6th Ed. McGraw-
Hill, 2004.

[44] Wiegers K. E. Software Requirements,
2nd Edition, Microsoft Publication,
2003.

[45] Khan, S. I., and Hoque, A. S. M. L.
(2010). A new technique for database
fragmentation in distributed
systems. International Journal of
Computer Applications, 5(9), 20-24.

[46] Khan, S. I., and Hoque, A. S.M. L.
(2012). Scalability and performance
analysis of CRUD matrix based
fragmentation technique for distributed
database. In Computer and Information
Technology (ICCIT), 2012 15th
International Conference on (pp. 567-
562). IEEE.

[47] Pareto principle, accessed from
http://www.
en.wikipedia.org/wiki/Pareto_principle.

[48] Craig S. Mullins “Defining Database
Performance”, accessed from
http://www.craigsmullins.com/cnr_db.ht
m.

[49] Fritchey G. and Dam S. “SQL Server
2008 Query Performance Tuning
Distilled”, 1st Ed. Apress, 2009.

Shahidul Islam Khan obtained his B.Sc. and M.Sc. Engineering Degree
in Computer Science and Engineering (CSE) from Ahsanullah University
of Science and Technology (AUST) and Bangladesh University of
Engineering and Technology (BUET), Dhaka, Bangladesh in 2003 and
2011. He is now a Ph.D. candidate in the Department of CSE, BUET,
which is the highest ranked technical university of Bangladesh. His
current fields of research are database systems, data mining, and health

informatics. He has twenty published papers in referred journals and conferences. He is also
an Associate Professor (Currently in study leave) in the Dept. of CSE, International Islamic
University Chittagong (IIUC), Bangladesh.

