
56 Stochastic Processes and Queueing Theory used in Cloud Computer Performance Simulations

Stochastic Processes and Queueing Theory used in Cloud Computer
Performance Simulations

Florin-Cătălin ENACHE

Bucharest University of Economic Studies
catalin.enache@live.com

The growing character of the cloud business has manifested exponentially in the last 5 years.
The capacity managers need to concentrate on a practical way to simulate the random
demands a cloud infrastructure could face, even if there are not too many mathematical tools
to simulate such demands.This paper presents an introduction into the most important
stochastic processes and queueing theory concepts used for modeling computer performance.
Moreover, it shows the cases where such concepts are applicable and when not, using clear
programming examples on how to simulate a queue, and how to use and validate a
simulation, when there are no mathematical concepts to back it up.
Keywords: capacity planning, capacity management, queueing theory, statistics, metrics

Introduction During the last years,
the types and complexity of people’s
needs increased fast. In order to face

all changes, the technology had to develop
new ways to fulfill the new demands.
Therefore, I take a deeper look into the
basic terms needed for understanding the
stochastic analysis and the queueing theory
approaches for computers performance
models. The most important distribution
for analyzing computer performance
models is the exponential distribution,
while the most representative distribution
for statistical analysis is the Gaussian (or
normal) distribution. For the purpose of
this article, an overview of the exponential
distribution will be discussed.

2.1 The Poisson Process
In probability theory, a Poisson process is
a stochastic process that counts the number
of events and the time points at which
these events occur in a given time interval.
The time between each pair of consecutive
events has an exponential distribution with
parameter λ and each of these inter-arrival
times is assumed independent of other
inter-arrival times. Considering a process
for which requests arrive at random, it
turns out that the density function that
describes that random process is
exponential. This derivation will turn out

to be extremely important for simulations,
in particular for applications modeling
computer performance. A typical example
is modeling the arrival of requests at a
server. The requests are coming from a
large unknown population, but the rate of
arrival,λ can be estimated as the number of
arrivals in a given period of time. Since it
is not reasonable to model the behavior of
the individuals in the population sending
the requests, it can be safely assumed that
the requests are generated independently
and at random.
Modeling such a process can help
answering the question of how a system
should be designed, in which requests
arrive at random time points. If the system
is busy, then the requests queue up,
therefore, if the queue gets too long, the
users might experience bad delays or
request drops, if the buffers are not big
enough. From a capacity planner point of
view, it is important to know how build up
a system that can handle requests that
arrive at random and are unpredictable,
except in a probability sense.
To understand and to simulate such a
process, a better understanding of its
randomness is required. For example,
considering the following time axis (as in
the second figure), the random arrivals can
be represented as in the figure below.

1

Database Systems Journal vol. VI, no. 2/2015 57

Fig.1. Random arrivals in time

If X is the random variable representing
the times between two consecutive arrivals
(arrows), according to the PASTA
Theorem(Poisson Arrivals See Time
Averages)[1], it is safe to assume that all

X-es are probabilistically identical.
Describing this randomness is equivalent
to finding the density function of X that
represents the time distance between two
consecutive arrows.

Fig.2.Interval of length divided into n intervals.

The problem described above needs to be
transformed so that it can be handled with
known mathematical tools. Supposing that
an arbitrary interval of length is chosen,
then the probability of the time until the
first arrival is longer than is P(X>).
This is by definition 1-FX(), where FX()
is the distribution function to be
calculated. If time would be discrete, by
dividing the interval between 0 andinto n
intervals, the calculating FX() reduces to
calculating the probability of no arrow in
the first n intervals, and switching back to
the continuous case by taking n → ∞ .
Let p be the probability that an arrow lands
in any of the n time intervals, which is true
for any of the n intervals since any of them
is as likely as any other to have an arrow

in it, then ()() 1
n

P X t p> = − , which is

the probability on no arrow, 1-p, in the
first n intervals. As mentioned, when
taking n → ∞ , 0p +→ andnp tλ= . The
equality np tλ= represents the average
number of arrows in n intervals – np –
which is equal to the average number of
arrows calculated as tλ - the arrival rate
multiplied by the length of the
interval.After switching to the continuous
case, it is derived that:

00 lim 1

() lim(1) lim(1)
n

x

n

n n t

n n
t xp enp t n

t
P X t p e

n
λ

λ

λ
+

→∞

−

→∞ →∞
>  → + = =  

> = − = − ========14243

(1)
Which is equivalent
to

0, (0)
() 1 ()

1 , (0)t

t
P X t P X t

e tλ−

<
≤ = − > = 

− ≥

and
0,(0)

() ()
, (0)

X tX

td
f t t

dt e t
F λλ −

<
= = 

≥
(2)

2.2 The exponential distribution.
The random variable X derived from the
Poisson process studied in section 2.1 of
this paper is called exponential with the
parameter (X~Exp()).The probability
density function(PDF) of X is defined as

fX ()= , which plots as in the

figure below for different values of the
parameter .

58 Stochastic Processes and Queueing Theory used in Cloud Computer Performance Simulations

Fig.3. PDF for in (0.5, 1.0, 1.5)

Integrating by parts,it is easy to
demonstrate the property that

0

1te dtλλ
∞

− =∫
, which is actually obvious,

since the sum of all probabilities of a
random variable X has to add up to 1.If
X~Exp() then the following properties
are true[2] :

• The expected value the random
variable X,

E(X)=
0

1tt e dtλλ
λ

∞
− =∫ (3) ,

• Expected value of X2 ,

E(X2)= 2
2

0

2tt e dtλλ
λ

∞
− =∫ (4) and

• The variance of X, V(X)=E(X2) –

[E(X)] 2=
2

2 2

2 1 1

λ λ λ
 − = 
 

 (5) .

When used in simulating computer
performance models,the parameter λ
denotes usually the arrival rate. From the
properties of the exponential distribution,
it can be deduced that the higher the
arrival rate λ is, the smaller are the
expected value – E(X) – and variance –
V(X) – of the exponentially distributed
random variable X.

3.1. Introduction to the Queueing
Theory M/G/1 Problem – FIFO
Assumption
Considering a system where demands are
coming are random, but the resources are
limited,the classic queueing problem is
how to describe the system as a function of
random demands. Moreover, the service
times of each request are also random, as
in figure 4:

Fig. 4. Random arrivals with random service times

From a request point of view, when a new
request arrives, it has two possibilities:

• It arrives and the server is
available. Then it keeps the server
busyfor a random amount of time
until the request is processed, or

• Typical case, when a request
arrives, it finds a queue in front of
it, and it needs to wait.

The queueing theory helps answering
questions like what is the average time that
a request spends waiting in queue before it
is serviced. The time a request must wait is
equal to the sum of the service times for
every request that is in the queue in front
of the current request plus the remaining
partial service time of the customer that

Database Systems Journal vol. VI, no. 2/2015 59

was in service at the time of the arrival of
the current request.
Calculating the expected waiting time of
the new requestmathematically, it would
be the sum(further named “convolution”)
of the density functions of each of the
service time requirements of the requests
in the queue, which could be any number
of convolutions, plus the convolution with
the remaining partial service time of the
customer that was in service at the time of
the arrival of the current request.
Furthermore, the number of terms in the
convolution, meaning the number of
requests waiting in the queue, is itself a
random variable[1].

On the other side, looking at the time
interval between the arrival and the leave
of the nthrequest, it helps in developing a
recursive way of estimating the waiting
times. The nthrequest arrives at time Tn
and, in general, it waits for a certain
amount of time – noted in the below figure
with Wn. This will be 0 if the request
arrives when the server is idle, because the
request is being served immediately. To
enforce the need of queueing theory, in
real-life, a request arrives typically when
the server is busy, and it has to wait. After
waiting, the request gets serviced for a
length of time Xn , and then leaves the
system.

Fig. 5. Representation for calculating the waiting time, depending on the arrival of the (n+1)th

customer

Recursively, when the next customer
arrives, there are 2 possibilities:

• The arrival can occur after the
nthrequest was already serviced,
therefore Wn+1=0 (explained in the
right grey-boxed part of figure 5),
or

• The arrival occurs after Tn but
before the nth request leaves the
system. From the fifth figure the
waiting time of the (n+1)th request
is deduced as the distance between
its arrival and the moment when
the nthrequest leaves the system,
mathematically represented as
Wn+1=Wn+Xn-IA n+1, where IA n+1is
the inter-arrival time between the
nth and (n+1)threquest.This can be
easily translated into a single
instruction that can be solved
recursively using any modern
programming language.

3.2. Performance measurements for the
M/G/1 queue
If λ is the arrival rate and X is the service
time, the server utilization is given by:

(), () 1

1,

E X if E X

otherwise

λ λ
ρ

<
= 
 (6)

Moreover, if the arrivals are described by a
Poisson process, the probability that a
request must wait in a queue is

()0P W ρ> = (7) , and the mean waiting

time is given by the Pollaczek-Khintchin
formula[3] :

() 2

() ()
* (1)

1 2 ()

E X V
E W

X

E X

ρ
ρ

= +
− (8)

In addition, if the service times are
exponentially distributed and the service
follows the FIFO principle (“first-in-first-
out”, also knows as FCFS, “first-come-
first-serve”), then the distribution function

60 Stochastic Processes and Queueing Theory used in Cloud Computer Performance Simulations

of the waiting time is given by the
following formula[1]:

(1)
()

0, 0
()

1 , 0
tW p

E X

t
F t

e tρ
− −

<
= 
 − ≥ (9)

There is no simple formula for Fw(t)when
the service times are not exponentially
distributed, but using computer simulation
can help developing such models, after
validating classic models as the one above.

4.1. Software simulation of the
Queueing Problem
As described previously, modeling the
M/G/1 queue can be done by using a
recursive algorithm by generating the
inter-arrival time and the service times
using the Inverse Transform Method[4].
The following lines written in the BASIC
programming language simulate such an
algorithm, although almost any
programming language could be used.

100 FOR I=1 to 10000
110 IA= ‘inter-arrival times to be generated
120 T=T+IA ‘time of the next arrival
130 W=W+X-IA ‘recursive calculation of waiting time s
140 IF W<0 THEN W=0
150 IF W>0 THEN C=C+1 ‘count all requests that wait
160 SW=SW+W ‘sum of waiting times for calculating E (W)
170 X= ‘service times to be generated
180 SX=SX+X ‘sum of service times for calculating U tilization
190 NEXT I
200 PRINT SX / T, C / 10000, SW / 10000 ‘ print Uti lization, P(W) and
E(W)

4.2. Generating random service and
inter-arrival times using the Inverse
Transform Method
Assuming that the computer can generate
independent identically distributed values
that are uniformly distributed in the
interval (0,1), a proper method of
generating random variable values
according to any specified distribution
function is using the Inverse Transform
Method.
To generate the random number X, it is
enough to input the randomcomputer
generated number on the vertical axis
andto project the value over the
distribution function G, where G is the
desired

distribution to be generated. Projecting the
point from the G graph furtherdown on the
horizontal axis, delivers the desired
randomly distributed values described by
the G density function.This method is
practically reduced to finding the inverse
function of the distribution function of the
distribution according to which the
numbers are generated.By plugging in the
computer randomly generated numbers, a
new random variable is generated with has
its distribution function G(u) [4]. This
procedure is schematically described in the
below figure.

Fig.6. Illustration of the Inverse Transform Method

Database Systems Journal vol. VI, no. 2/2015 61

For example, for a Poisson process of
arrivals that are exponentially distributed
with parameter λ, where λ is the arrival

rate and
1

()E IA
λ

= , according to the

Inverse Transform Method, a value of
λ=1.6 arrivals per second is derived,
equivalent to anaverage inter-arrival time

of
1 5

8λ
= seconds. For

() 1 uG u e Rλλ −= − = with u≥0, it is

deduced that 1() 1/ ln(1)G R Rλ− = − −
where R is the computer generated value.
Therefore, the instruction 110 from section
3 of this paper becomes:110 IA=-
(5/8)*LOG(1-RND), where RND is the
BASIC function that generate values
uniformly distributed between 0 and 1.Of
course, any programming language that is
able to generate random independent
identically distributed numbersbetween 0
and 1 can be used for simulation.

5. Comparing the mathematical solution
of the queueing problemwith the
computer simulation
To illustrate the applicability of the
software simulation, 4 different arrival
times distributions are analyzed :

1. Exponential service time, with
mean service time E(X)=0.5

2. Constant service time, X=0.5
3. Uniformly identical distributed

service times between 0 and 1,
X~U(0,1)

4. Service times of 1/3 have a
probability of 90%,and service
times of 2 have a probability of
10%.

For all 4 simulations, exponential
distributed inter-arrivals with λ=1.6 are
used as derived in 4.2 section. All
calculations in the following table are done
according to the formulas presented in
section 3.2.

Table 1. Comparison between the mathematical and simulated results

 ρ P(W>0) P(W>0.5) E(W)

X Formula of
X

Theory Simulation Theory Simulation Theory Simulation Theory Simulation

1 -
0.5*LOG(1-

RND)

0.8 0.799436 0.8 0.799817 0.65498 0.654924 2 1.991853

2 0.5 0.8 0.799724 0.8 0.799895 NA 0.55622 1 0.997296

3 RND 0.8 0.800048 0.8 0.800103 NA 0.622625 1,(3) 1.332808

4 q = RND:
IF q <= 0.9
THEN X =
1 / 3 ELSE

X = 2

0.8 0.804667 0.8 0.799336 NA 0.616419 2 1.999094

62 Stochastic Processes and Queueing Theory used in Cloud Computer Performance Simulations

All 4 simulations have been chosen in such
way that E(X)=0.5, and the distinction is
done by choosing the service times with
different distributions. Since the utilization
is directly dependent on the arrival rate and
mean arrival times, it is equal with 80% in
all 4 cases. According to (7), the
probability of waiting is also equal to 80%
in all 4 cases.
In this simulation, the mean waiting time,
as deduced from the Pollaczek-
Khintchin(8) formula, confirms the
accuracy of the simulation model, and
gives insights also for the other cases,
offering a clear approximation of the
behavior of the designed system. It is
interesting to observe that mean waiting
time when having exponential service
times is double in comparison with the
mean waiting time when having constant
service times, although the mean service
time, the utilization and the probability of
waiting are equal in both cases.

6. Conclusions
Based on all information presented in this
paper, I can conclude that computer
simulation is an important tool for the
analysis of queues whose service times
have any arbitrary specified distribution. In
addition, the theoretical results for the
special case of exponential service
times(8) are extremely important because

they can be used to check the logic and
accuracy of the simulation, before
extending it to more complex situations.
Moreover, such a simulation gives insight
on how such a queue would behave as a
result of different service times. Further, I
consider that it offers a methodology for
looking into more complicated cases, when
a mathematical approach cannot help.

References
[1] R. B. Cooper, Introduction to Queueing
Theory, Second Edition. New York: North
Holland, 1981, pp. 208-232.
[2]S. Ghahramani, Fundamentals of
Probability with Stochastic Processes,
Third Edition. Upper Saddle River,
Pearson Prentice Hall 2005, pp.284-292.
[3] L. Lakatos , “A note on the Pollaczek-
Khinchin Formula”, Annales Univ. Sci.
Budapest., Sect. Comp. 29 pp. 83-91,
2008.
[4]K. Sigman, “Inverse Transform
Method”. Available :
http://www.columbia.edu/~ks20/4404-
Sigman/4404-Notes-ITM.pdf [January 15,
2015].
[5] K. Sigman, “Exact Simulation of the
stationary distribution of the FIFO M/G/c
Queue”, J. Appl. Spec. Vol. 48A, pp. 209-
213, 2011, Available :
http://www.columbia.edu/~ks20/papers/Q
UESTA-KS-Exact.pdf [January 20, 2015]

Florin-Catalin ENACHE graduated from the Faculty of Cybernetics, Statistics
and Economic Informatics of the Academy of Economic Studies in 2008.
Starting 2010 he holds a MASTER degree in the field of Economic
Informatics, in the area of “Maximum Availability Architecture”. His main
domains of interest are : Computer Sciences, Database Architecture and Cloud
Performance Management. Since 2014 he is a PhD. Candidate at the Bucharest
University of Economic Studies, focusing his research on Performance

management in Cloud environments.

