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The growing character of the cloud business has manifested exponentially in the last 5 years. 
The capacity managers need to concentrate on a practical way to simulate the random 
demands a cloud infrastructure could face, even if there are not too many mathematical tools 
to simulate such demands.This paper presents an introduction into the most important 
stochastic processes and queueing theory concepts used for modeling computer performance. 
Moreover, it shows the cases where such concepts are applicable and when not, using clear 
programming examples on how to simulate a queue, and how to use and validate a 
simulation, when there are no mathematical concepts to back it up.  
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Introduction During the last years, 
the types and complexity of people’s 
needs increased fast. In order to face 

all changes, the technology had to develop 
new ways to fulfill the new demands. 
Therefore, I take a deeper look into the 
basic terms needed for understanding the 
stochastic analysis and the queueing theory 
approaches for computers performance 
models. The most important distribution 
for analyzing computer performance 
models is the exponential distribution, 
while the most representative distribution 
for statistical analysis is the Gaussian (or 
normal) distribution. For the purpose of 
this article, an overview of the exponential 
distribution will be discussed.  
 
2.1 The Poisson Process 
In probability theory, a Poisson process is 
a stochastic process that counts the number 
of events and the time points at which 
these events occur in a given time interval. 
The time between each pair of consecutive 
events has an exponential distribution with 
parameter λ and each of these inter-arrival 
times is assumed independent of other 
inter-arrival times. Considering a process 
for which requests arrive at random, it 
turns out that the density function that 
describes that random process is 
exponential. This derivation will turn out 

to be extremely important for simulations, 
in particular for applications modeling 
computer performance. A typical example 
is modeling the arrival of requests at a 
server. The requests are coming from a 
large unknown population, but the rate of 
arrival,λ can be estimated as the number of 
arrivals in a given period of time. Since it 
is not reasonable to model the behavior of 
the individuals in the population sending 
the requests, it can be safely assumed that 
the requests are generated independently 
and at random.  
Modeling such a process can help 
answering the question of how a system 
should be designed, in which requests 
arrive at random time points. If the system 
is busy, then the requests queue up, 
therefore, if the queue gets too long, the 
users might experience bad delays or 
request drops, if the buffers are not big 
enough. From a capacity planner point of 
view, it is important to know how build up 
a system that can handle requests that 
arrive at random and are unpredictable, 
except in a probability sense. 
To understand and to simulate such a 
process, a better understanding of its 
randomness is required. For example, 
considering the following time axis (as in 
the second figure), the random arrivals can 
be represented as in the figure below. 
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Fig.1. Random arrivals in time 

 
If X is the random variable representing 
the times between two consecutive arrivals 
(arrows), according to the PASTA 
Theorem(Poisson Arrivals See Time 
Averages)[1], it is safe to assume that all 

X-es are probabilistically identical. 
Describing this randomness is equivalent 
to finding the density function of X that 
represents the time distance between two 
consecutive arrows. 

 
Fig.2.Interval of length  divided into n intervals. 

 
The problem described above needs to be 
transformed so that it can be handled with 
known mathematical tools. Supposing that 
an arbitrary interval of length  is chosen, 
then the probability of the time until the 
first arrival is longer than  is P(X> ). 
This is by definition 1-FX( ), where FX( ) 
is the distribution function to be 
calculated. If time would be discrete, by 
dividing the interval between 0 andinto n 
intervals, the calculating FX( ) reduces to 
calculating the probability of no arrow in 
the first n intervals, and switching back to 
the continuous case by taking n → ∞ . 
Let p be the probability that an arrow lands 
in any of the n time intervals, which is true 
for any of the n intervals since any of them 
is as likely as any other to have an arrow 

in it,  then ( )( ) 1
n

P X t p> = − , which is 

the probability on no arrow, 1-p, in the 
first n intervals. As mentioned, when 
taking n → ∞  , 0p +→ andnp tλ= . The 
equality np tλ=  represents the average 
number of arrows in n intervals – np – 
which is equal to the average number of  
arrows calculated as tλ  - the arrival rate 
multiplied by the length of the 
interval.After switching to the continuous 
case, it is derived that: 
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2.2 The exponential distribution.  
The random variable X derived from the 
Poisson process studied in section 2.1 of 
this paper is called exponential with the 
parameter  ( X~Exp( ) ).The probability 
density function(PDF) of X is defined as 

fX ( )= , which plots as in the 

figure below for different values of the 
parameter . 
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Fig.3. PDF for  in (0.5, 1.0, 1.5) 

 
Integrating by parts,it is easy to 
demonstrate the property that 

0

1te dtλλ
∞

− =∫
, which is actually obvious, 

since the sum of all probabilities of a 
random variable X has to add up to 1.If 
X~Exp( ) then the following  properties 
are true[2] :  

• The expected value the random 
variable X, 

E(X)=
0
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λ
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• Expected value of X2 , 

E(X2)= 2
2
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• The variance of X, V(X)=E(X2) – 

[E(X)] 2=
2
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When used in simulating computer 
performance models,the parameter λ 
denotes usually the arrival rate. From the 
properties of the exponential distribution, 
it can be deduced that the higher the 
arrival rate λ is, the smaller are the 
expected value – E(X) – and variance – 
V(X) – of the exponentially distributed 
random variable X. 
 
3.1. Introduction to the Queueing 
Theory M/G/1 Problem – FIFO 
Assumption 
Considering a system where demands are 
coming are random, but the resources are 
limited,the classic queueing problem is 
how to describe the system as a function of 
random demands. Moreover, the service 
times of each request are also random, as 
in figure 4:

 
Fig. 4. Random arrivals with random service times 

 
From a request point of view, when a new 
request arrives, it has two possibilities: 

• It arrives and the server is 
available. Then it keeps the server 
busyfor a random amount of time 
until the request is processed, or 

• Typical case, when a request 
arrives, it finds a queue in front of 
it, and it needs to wait. 

The queueing theory helps answering 
questions like what is the average time that 
a request spends waiting in queue before it 
is serviced. The time a request must wait is 
equal to the sum of the service times for 
every request that is in the queue in front 
of the current request plus the remaining 
partial service time of the customer that 
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was in service at the time of the arrival of 
the current request. 
Calculating the expected waiting time of 
the new requestmathematically, it would 
be the sum(further named “convolution”) 
of the density functions of each of the 
service time requirements of the requests 
in the queue, which could be any number 
of convolutions, plus the convolution with 
the remaining partial service time of the 
customer that was in service at the time of 
the arrival of the current request. 
Furthermore, the number of terms in the 
convolution, meaning the number of 
requests waiting in the queue, is itself a 
random variable[1]. 

On the other side, looking at the time 
interval between the arrival and the leave 
of the nthrequest, it helps in developing a 
recursive way of estimating the waiting 
times. The nthrequest arrives at time Tn 
and,  in general, it waits for a certain 
amount of time – noted in the below figure 
with Wn. This will be 0 if the request 
arrives when the server is idle, because the 
request is being served immediately. To 
enforce the need of queueing theory, in 
real-life, a request arrives typically when 
the server is busy, and it has to wait. After 
waiting, the request gets serviced for a 
length of time Xn , and then leaves the 
system. 

 

 
Fig. 5. Representation for calculating the waiting time, depending on the arrival of the (n+1)th 

customer 
 

Recursively, when the next customer 
arrives, there are 2 possibilities:  

• The arrival can occur after the 
nthrequest was already serviced, 
therefore Wn+1=0 (explained in the 
right grey-boxed part of figure 5), 
or 

• The arrival occurs after Tn but 
before the nth request leaves the 
system. From the fifth figure the 
waiting time of the (n+1)th request 
is deduced as the distance between 
its arrival and the moment when 
the nthrequest leaves the system, 
mathematically represented as 
Wn+1=Wn+Xn-IA n+1, where IA n+1is 
the inter-arrival time between the 
nth and (n+1)threquest.This can be 
easily translated into a single 
instruction that can be solved 
recursively using any modern 
programming language.  

3.2. Performance measurements for the 
M/G/1 queue 
If λ is the arrival rate and X is the service 
time, the server utilization is given by: 

( ), ( ) 1

1,

E X if E X

otherwise

λ λ
ρ

<
= 
 (6) 

Moreover, if the arrivals are described by a 
Poisson process, the probability that a 
request must wait in a queue is 

( )0P W ρ> = (7) , and the mean waiting 

time is given by the Pollaczek-Khintchin 
formula[3] : 

( ) 2

( ) ( )
* (1 )

1 2 ( )

E X V
E W

X

E X

ρ
ρ

= +
− (8) 

In addition, if the service times are 
exponentially distributed and the service 
follows the FIFO principle (“first-in-first-
out”, also knows as FCFS, “first-come-
first-serve”), then the distribution function 
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of the waiting time is given by the 
following formula[1]: 

(1 )
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There is no simple formula for Fw(t)when 
the service times are not exponentially 
distributed, but using computer simulation 
can help developing such models, after 
validating classic models as the one above.  
 

4.1. Software simulation of the 
Queueing Problem 
As described previously, modeling the 
M/G/1 queue can be done by using a 
recursive algorithm by generating the 
inter-arrival time and the service times 
using the Inverse Transform Method[4]. 
The following lines written in the BASIC 
programming language simulate such an 
algorithm, although almost any 
programming language could be used. 
 

 
100 FOR I=1 to 10000 
110 IA= ‘inter-arrival times to be generated  
120 T=T+IA  ‘time of the next arrival 
130 W=W+X-IA ‘recursive calculation of waiting time s 
140 IF W<0 THEN W=0 
150 IF W>0 THEN C=C+1 ‘count all requests that wait  
160 SW=SW+W ‘sum of waiting times for calculating E (W) 
170 X= ‘service times to  be generated 
180 SX=SX+X ‘sum of service times for calculating U tilization 
190 NEXT I 
200 PRINT SX / T, C / 10000, SW / 10000 ‘ print Uti lization, P(W) and 
E(W) 

 
4.2. Generating random service and 
inter-arrival times using the Inverse 
Transform Method 
Assuming that the computer can generate 
independent identically distributed values 
that are uniformly distributed in the 
interval (0,1), a proper method of 
generating random variable values 
according to any specified distribution 
function is using the Inverse Transform 
Method.  
To generate the random number X, it is 
enough to input the randomcomputer 
generated number on the vertical axis 
andto project the value over the 
distribution function G, where G is the 
desired  

 
distribution to be generated. Projecting the 
point from the G graph furtherdown on the 
horizontal axis, delivers the desired 
randomly distributed values described by 
the G density function.This method is 
practically reduced to finding the inverse 
function of the distribution function of the 
distribution according to which the 
numbers are generated.By plugging in the 
computer randomly generated numbers, a 
new random variable is generated with has 
its distribution function G(u) [4]. This 
procedure is schematically described in the 
below figure. 
 

 

 
Fig.6. Illustration of the Inverse Transform Method 
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For example, for a Poisson process of 
arrivals that are exponentially distributed 
with parameter λ, where λ is the arrival 

rate and 
1

( )E IA
λ

= , according to the 

Inverse Transform Method, a value of  
λ=1.6 arrivals per second is derived, 
equivalent to anaverage inter-arrival time 

of 
1 5

8λ
= seconds. For 

( ) 1 uG u e Rλλ −= − =  with u≥0, it is 

deduced that 1( ) 1/ ln(1 )G R Rλ− = − −  
where R is the computer generated value. 
Therefore, the instruction 110 from section 
3 of this paper becomes:110 IA=-
(5/8)*LOG(1-RND), where RND is the 
BASIC function that generate values 
uniformly distributed between 0 and 1.Of 
course, any programming language that is 
able to generate random independent 
identically distributed numbersbetween 0 
and 1 can be used for simulation.  

5. Comparing the mathematical solution 
of the queueing problemwith the 
computer simulation 
To illustrate the applicability of the 
software simulation, 4 different arrival 
times distributions are  analyzed : 

1. Exponential service time, with 
mean service time E(X)=0.5 

2. Constant service time, X=0.5 
3. Uniformly identical distributed 

service times between 0 and 1, 
X~U(0,1) 

4. Service times of 1/3 have a 
probability of 90%,and service 
times of 2 have a probability of 
10%. 

For all 4 simulations, exponential 
distributed inter-arrivals with λ=1.6 are 
used as derived in 4.2 section. All 
calculations in the following table are done 
according to the formulas presented in 
section 3.2. 

 
Table 1. Comparison between the mathematical and simulated results 

 ρ P(W>0) P(W>0.5) E(W) 

X Formula of 
X 

Theory Simulation Theory Simulation Theory Simulation Theory Simulation 

1 -
0.5*LOG(1-

RND) 

0.8 0.799436 0.8 0.799817 0.65498 0.654924 2 1.991853 

2 0.5 0.8 0.799724 0.8 0.799895 NA 0.55622 1 0.997296 

3 RND 0.8 0.800048 0.8 0.800103 NA 0.622625 1,(3) 1.332808 

4 q = RND: 
IF q <= 0.9 
THEN X = 
1 / 3 ELSE 

X = 2 

0.8 0.804667 0.8 0.799336 NA 0.616419 2 1.999094 
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All 4 simulations have been chosen in such 
way that E(X)=0.5, and the distinction is 
done by choosing the service times with 
different distributions. Since the utilization 
is directly dependent on the arrival rate and 
mean arrival times, it is equal with 80% in 
all 4 cases. According to (7), the 
probability of waiting is also equal to 80% 
in all 4 cases. 
In this simulation, the mean waiting time, 
as deduced from the Pollaczek-
Khintchin(8) formula, confirms the 
accuracy of the simulation model, and 
gives insights also for the other cases, 
offering a clear approximation of the 
behavior of the designed system. It is 
interesting to observe that mean waiting 
time when having exponential service 
times is double in comparison with the 
mean waiting time when having constant 
service times, although the mean service 
time, the utilization and the probability of 
waiting are equal in both cases. 
 
6. Conclusions 
Based on all information presented in this 
paper, I can conclude that computer 
simulation is an important tool for the 
analysis of queues whose service times 
have any arbitrary specified distribution. In 
addition, the theoretical results for the 
special case of exponential service 
times(8) are extremely important because 

they can be used to check the logic and 
accuracy of the simulation, before 
extending it to more complex situations. 
Moreover, such a simulation gives insight 
on how such a queue would behave as a 
result of different service times. Further, I 
consider that it offers a methodology for 
looking into more complicated cases, when 
a mathematical approach cannot help.  
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