
Database Systems Journal vol. I, no. 2/2010                                                                                               3 

Column-Oriented Databases, an Alternative for Analytical Environment 

 
Gheorghe MATEI 

Romanian Commercial Bank, Bucharest, ROMANIA 
George.matei@bcr.ro 

 

It is widely accepted that a data warehouse is the central place of a Business Intelligence system. 

It stores all data that is relevant for the company, data that is acquired both from internal and 

external sources. Such a repository stores data from more years than a transactional system can 

do, and offer valuable information to its users to make the best decisions, based on accurate and 

reliable data. As the volume of data stored in an enterprise data warehouse becomes larger and 

larger, new approaches are needed to make the analytical system more efficient. This paper 

presents column-oriented databases, which are considered an element of the new generation of 

DBMS technology. The paper emphasizes the need and the advantages of these databases for an 

analytical environment and make a short presentation of two of the DBMS built in a columnar 

approach. 

Keywords: column-oriented database, row-oriented database, data warehouse, Business 

Intelligence, symmetric multiprocessing, massively parallel processing. 

 

Introduction 

In the evolution of computing science, 
three generations of database technology are 
identified since the 60’s till nowadays. The 
first generation started in the 60’s and its 
main purpose was to enable disparate but 
related application to share data otherwise 
than passing files between them. 

The publishing of “A Relational Model 

of Data for Large Shared Data Banks” by E. 
F. Codd marked the beginning of the second 
generation of DBMS (database management 

systems) technology. Codd’s premise was 
that data had to be managed in structures 
developed according to the mathematical set 
theory. He stated that data had to be 
organized into tuples, as attributes and 
relations. 

A third generation began to emerge in 
the late 90’s and now is going to replace 
second-generation products. Multi-core 
processors became common, 64-bit 
technology is used largely for database 
servers, memory is cheaper and disks are 
cheaper and faster than ever before. 

A recent IDC study [1] examines 
emerging trends in DBMS technology as 
elements of the third generation of such 
technology. It considers that, at the current 

rate of development and adoption, the 
following innovations will be achieved in 
the next five years: 

• most data warehouses will be stored 
in a columnar fashion; 

• most OLTP (On-Line Transaction 

Processing) databases will either be 
augmented by an in-memory database or 
reside entirely in memory; 

• most large-scale database servers 
will achieve horizontal scalability through 
clustering; 

• many data collection and reporting 
problems will be solved with databases that 
will have no formal schema at all. 

This study examines how some 
innovations in database technology field are 
implemented more and more. Most of these 
technologies have been developed for at 
least ten years, but they are only now 
becoming widely adopted. 

As Carl Olofson, research vice president 
for database management and data 
integration software research at IDC, said, 
“many of these new systems encourage you 

to forget disk-based partitioning schemes, 

indexing strategies and buffer management, 

and embrace a world of large-memory 

models, many processors with many cores, 

1 



4                                                                   Column-Oriented Databases, an Alternative for Analytical Environment 

clustered servers, and highly compressed 

columnwise storage”. 
From the innovations that the study 

considers that will be achieved in the next 
years, this paper presents the columnar data 
storage. 

 
2. The need for column-oriented 

databases 

The volume of data acquired into an 
organization is growing rapidly. So does the 
number of users who need to access and 
analyse this data. IT systems are used more 
and more intensive, in order to answer more 
numerous and complex demands needed to 
make critical business decisions. Data 
analysis and business reporting need more 
and more resources. Therefore, better, faster 
and more effective alternatives have to be 
found. Business Intelligence (BI) systems 
are proper solutions for solving the 
problems above. Decision-makers need a 
better access to information, in order to 
make accurate and fast decisions in a 
permanent changing environment. As part of 
a BI system, reporting has become critical 
for a company’s business. 

Years ago, reports prepared by analysts 
were addressed only to the company’s 
executive management. Nowadays, 
reporting has become an instrument 
addressed to decision-makers on all 
organizational levels, aiming to improve the 
company’s activity, to ensure decision 
quality, control costs and prevent losses. 

As already mentioned, the volume of 
data acquired into a company is growing 
permanently, because business operations 
expand and, on the other hand, the company 
has to interact with more sources of data and 
keep more data online. More than ever 
before, users need a faster and more 
convenient access to historical data for 
analysing purposes. Enterprise data 
warehouses are a necessity for the 
companies that want to stay competitive and 
successful. More and more reports and ad-
hoc queries are requested to support the 
decision making process. At the same time, 
companies have to run audit reports on their 

operational and historical data in order to 
ensure compliance [2]. 

These new demands add more pressures 
upon IT departments. More and more 
hardware resources are needed in order to 
store and manage an increasing volume of 
data. The increasing number of queries 
needs larger amounts of CPU cycles, so 
more processors, having a higher 
performance, must be added to the system 

The size of the data warehouses storing 
this data is increasing permanently, 
becoming larger and larger. While five years 
ago the largest data warehouses were around 
100 terabytes in size, now a data warehouse 
size at the petabyte level is no longer 
unusual. The challenge is to maintain the 
performance of these repositories, which are 
built, mostly, as relational structures, storing 
data in a row-oriented manner. The 
relational model is a flexible one and it has 
proven its capacity to support both 
transactional and analytical processing. But, 
as the size and complexity of data 
warehouses have increased, a new approach 
was proposed as an alternative on the row-
oriented approach, namely storing data in a 
column-oriented manner. Unlike the row-
oriented approach, where the data storage 
layer contains records (rows), in a column-
oriented system it contains columns. This is 
a simple model, more adequate for data 
repositories used by analytical applications, 
with a wide range of users and query types. 

Researches indicate that the size of the 
largest data warehouse doubles every three 
years. Growth rates of system hardware 
performance are being overrun by the need 
for analytical performance [3]. The volume 
of data needed to be stored is growing due to 
more and various requirements for reporting 
and analytics, from more and more business 
areas, increased time periods for data 
retention, a greater number of observations 
loaded in data warehouses and a greater 
number of attributes for each observation. 
This is true if taking into consideration only 
structured data. But nowadays, 
organizations collect a larger and larger 
volume of unstructured data, as images, 



Database Systems Journal vol. I, no. 2/2010                                                                                               5 

audio and video files, which need a much 
greater storing space than structured data. 

Row-oriented databases have been 
designed for transactional processing. For 
example, in the account management system 
of a bank, all attributes of an account are 
stored in a single row. Such an approach is 
not optimal in an analytical system, where a 
lot of read operations are executed in order 
to access a small number of attributes from a 
vast volume of data. In a row-oriented 
architecture, system performance, users’ 
access and data storage become major issues 
very quickly [4]. As they are designed to 
retrieve all elements from several rows, row-
oriented databases are not well suited for 
large scale processing, as needed in an 
analytical environment. As opposed to 
transactional queries, analytical queries 
typically scan all the database’s records, but 
process only a few elements of them. In a 
column-oriented database all instances of a 
single data element, such as account 
number, are stored together so they can be 
accessed as a unit. Therefore, column-
oriented databases are more efficient in an 
analytical environment, where queries need 
to read all instances of a small number of 
data elements. 

System performance enhances 
spectacularly in a column-oriented solution, 
because queries search only few attributes, 
and they will not scan the attributes that are 
irrelevant for those queries. Requested data 
is found faster, because less sort operations 
have to be performed. 

A typical feature of evolved BI systems 
is their capability to make strategic business 
analyses, to process complex events and to 
drill deeply into data. As the volume of data 
becomes impressive and performance 
demands required by users are likely to 
outpace, it is obviously that row-oriented 
relational database management systems 
stopped to be the solution for implementing 
a BI system having powerful analytical and 
predictive capabilities. A new model tends 
to come into prominence as an alternative on 
developing analytical databases, namely one 
that manages data by columns. 

A column-oriented DBMS stores data in 
a columnar manner and not by rows, as 
classic DBMS do. In the columnar 
approach, each attribute is stored in a 
separate table, so successive values of that 
attribute are stored consecutively. This is an 
important advantage for data warehouses 
where, generally, information is obtained by 
aggregating a vast volume of data. 
Therefore, operations as MIN, MAX, SUM, 
COUNT, AVG and so forth are performed 
very quickly [5]. 

When the tables of a database are 
designed, their columns are established. The 
number of rows will be determined when the 
tables will be populated with data. In a row-
oriented database, data is stored in a tabular 
manner. The data items of a row are stored 
one after another; rows are also stored one 
after another, so the last item of a row is 
followed by the first item of the next row. 

In a column-oriented database, the data 
items of a column are stored one after 
another, and also are the columns; so the last 
item of a column is followed by the first 
item of the next column. 

 
3. Differences between the row-

oriented and column-oriented 

approaches 

In a typical relational DBMS, data is 
stored and managed as rows, each row 
containing all the attributes of an element of 
that entity (table). Such systems are used by 
transactional applications which, at a certain 
moment, generate or modify one or a small 
number of records. Unlike transactional 
applications, which use all, or almost all the 
attributes of a record, analytical and BI 
applications scan few attributes (columns) of 
a vast number of records. Most often, they 
have to aggregate data stored in those 
columns in order to meet the users’ 
demands. Because of the row-oriented 
structure of the database, the entire record 
has to be read in order to access the required 
attributes. This fact causes the reading of a 
vast amount of unuseful additional data in 
order to access the requested information. 



6                                                                   Column-Oriented Databases, an Alternative for Analytical Environment 

Figure 1 shows that much more data 
than needed is read to satisfy the request for 

the total volume of term deposits opened at 
the branches in Bucharest. 

 

R
o

w
 I

D
 

A
cc

o
u

n
t 

n
u

m
b

er
 

A
cc

o
u

n
t 

ty
p

e 

O
p

en
 d

a
te

 

T
er

m
 a

c
co

u
n

t 

C
u

rr
en

cy
 

B
a

la
n

ce
 d

a
te

 

O
ri

g
in

a
l 

cu
rr

en
cy

 

b
a

la
n

ce
 

R
O

N
 e

q
u

iv
a

le
n

t 

b
a

la
n

ce
 

In
te

re
st

 r
a

te
 

C
a

lc
u

la
te

d
 

in
te

re
st

 

ID
 b

ra
n

ch
 

C
it

y
 

1             

2             

3             

…
…

…
.             

n             

 
Fig. 1. Analytical request in a row-oriented database 

 

Row-oriented databases were designed 
for transactional applications, and they are 
optimized for retrieval and processing of 
small data sets. Seldom, to support 
analytical requests, it is necessary to build 
additional indexes, pre-aggregating data 
structures, or special materialized views and 
cubes. All these aspects require additional 
processing time and data storage. However, 
because they are built in order to provide 
quickly results for queries that were known 
at the design stage, they will not have the 
same performance when ad-hoc queries, that 
were not foreseen before, are performed. 

The business demands require the 
storage of many data items. But any user 
wants to get information as soon as possible. 
Therefore, a proper solution for data 
organization has to be implemented in order 
to ensure a good performance of the system. 

Several technical solutions can be used 
to improve system performance, such as 
partitioning, star indexes, query pre-
processing, bitmap and index joins, or 
hashing. These solutions aim to offer 
support for more specific data retrieval, but 

they still have to examine the entire content 
of a row. 

Taking into consideration those 
presented above, a new approach was 
proposed, to store data along columns. In 
such data organization, each column is 
stored separately and the system selects only 
the columns requested by users. In every 
column data is stored in row order, so that 
the 50th entry for each column belongs to the 
same row, namely the 50th row. 

Figure 2 shows that the same query as 
those in figure 1 reads less data in a column-
oriented system, in order to provide the 
same result. No additional indexes have to 
be built for improving query performance, 
because every column forms an index. This 
fact reduces the number of I/O operations 
and enables quick access to data, without the 
need to read the entire database. Data from 
each column is stored contiguously on disk. 
Column values are joined into rows based 
on their relative position in each column. As 
a result of the column-oriented architecture, 
only those columns needed for a specific 
query are read form disk. Because in an 



Database Systems Journal vol. I, no. 2/2010                                                                                               7 

analytical environment most of queries need 
to retrieve only few columns, this vertical 
partitioning approach produces important 

I/O savings. This fact contributes to system 
performance improvement, as regards the 
query execution time. 

 

R
o

w
 I

D
 

A
cc

o
u

n
t 

n
u

m
b

er
 

A
cc

o
u

n
t 

ty
p

e 

O
p

en
 d

a
te

 

T
er

m
 a

c
co

u
n

t 

C
u

rr
en

cy
 

B
a

la
n

ce
 d

a
te

 

O
ri

g
in

a
l 

cu
rr

en
cy

 

b
a

la
n

ce
 

R
O

N
 e

q
u

iv
a

le
n

t 

b
a

la
n

ce
 

In
te

re
st

 r
a

te
 

C
a

lc
u

la
te

d
 

in
te

re
st

 

ID
 b

ra
n

ch
 

C
it

y
 

1             

2             

3             

…
…

…
.             

n             

 
Fig. 2. Analytical request in a column-oriented database 

 

Note. Figure 2 presents a reunion of the 
tables in a column-oriented database. In fact, 
each table has two columns: one containing 
the row ID, and the other, the values of the 
appropriate attribute. Because of the limited 
space on the page, the row ID column is not 
multiplied for every table, and the attribute 
columns are close together. 

Comparing the two figures above, it’s 
easy to observe that the same request has to 
read more data in a row-oriented structure 
than in a column-oriented one. In order to 
read a certain attribute in a row-oriented 
structure, all the adjacent attributes have to 
be read, even if they are not interesting for 
the requester. In a column-oriented 
structure, since all values of an attribute are 
stored together, consecutively, this problem 
doesn’t exist [6]. 

A column-oriented database is faster 
than a row-oriented one, because its 
processing is not affected by unnecessary 
content of rows. As long as many database 
tables can have dozens of columns and most 

business requests need only a few of them, 
the columnar approach is a proper solution 
for analytical systems. 

Talking about the efficiency of a 
column-oriented system, some remarks are 
to be made concerning processing time. 
Thus, such a system is more efficient when 
it’s necessary to aggregate a large number of 
rows, but only a small number of columns 
are requested. If many columns of a small 
number of rows have to be processed, a row-
oriented system is more efficient than a 
column-oriented one. The efficiency is even 
greater when row size is relatively small, 
because the entire row can be retrieve with a 
single disk seek. 

Updating an entire column at once is 
faster in a column-oriented database. All the 
data of that column is modified through only 
one updating command, without the need to 
read all columns of each row. But writing or 
updating a single row is more efficient in a 
row-oriented database if all attributes are 
supplied at the same time, because the entire 



8                                                                   Column-Oriented Databases, an Alternative for Analytical Environment 

row can be written with a single disk access, 
whereas writing to multiple columns 
requires multiple writes. 

SQL queries in a column-oriented 
database are identical with those in a row-
oriented database, without any modification. 
What is different, is the way that the 
database administrator has to think about 
data. While in a row-oriented database he 
thinks in terms of individual transactions, in 
a column-oriented database he has to think 
in terms of similar items derived from sets 
of transactions. From the indexing point of 
view, he has to pay more attention to the 
cardinality of the data, because an index is 
related with a subject, such as the balance 
account, and not with an entire transaction 
with all its fields. 

 
4. Advantages of the column-oriented 

approach 

Column-oriented databases provide 
important advantages towards the row-
oriented ones, some of them being presented 
below. 

Column-oriented databases provide a 
better performance for analytical requests. 
In the row-oriented approach, the system 
performance decreases significantly as the 
number of simultaneous queries increases. 
Building additional indexes in order to 
accelerate queries becomes uneffective with 
a large number of diverse queries, because 
more storage and CPU time are required to 
load and maintain those indexes. In a 
column-oriented system indexes are built to 
store data, while in a row-oriented system 
they represent the way to point to the 
storage area that contains the row data. As a 
result, a column-oriented system will read 
only the columns required in a certain query. 

On the other hand, as they store data as 
blocks by columns rather than by rows, the 
actions performed on a column can be 
completed with less I/O operations. Only 
those attributes requested by users are read 
from disk. Although a row-oriented table 
can be partitioned vertically, or an index can 
be created for every column so it could be 
accessed independently, the performance is 

significantly lower than in a column-
oriented structure [7]. And taking into 
consideration that I/O operations are the 
bottleneck of a database application, the 
column-oriented approach proves its 
superiority against the row-oriented one. 

Unlike the row-oriented approach, the 
column-oriented approach allows rapid 

joins and aggregations. Tables are already 
sorted, so there is no need to sort them 
before merge or join them. In addition, 
accessing data along columns allows 
incremental data aggregation, which is very 
important for BI applications. In addition, 
this approach allows parallel data access, 
improving the system performance. 
Thereby, complex aggregations can be 
fulfiled by the parallel processing of 
columns and then joining data in order to 
achieve the final result. 

Column-oriented databases need a 
smaller disk space to store data than row-
oriented databases. To accommodate the 
sustained increase of volume of data, 
additional structures – as indexes, tables for 
pre-aggregation and materialized views, are 
built in row-oriented systems. Column-
oriented databases are more efficient 
structures. They don’t need additional 
storage for indexes, because data is stored 
within the indexes themselves. Bitmap 
indexes are used to optimize data store and 
its fast retrieval. That’s why in a column-
oriented database queries are more efficient 
than in a row-oriented one. 

Moreover, a higher data compression 
rate can be achieved in a column-oriented 
database than in a row-oriented one. It is 
well known that compression is more 
effective when repeated values are 
presented, and values within a column are 
quite similar to each other. A column-
oriented approach allows the ability to 
highly compress the data due to the high 
potential for the existence of similar values 
in adjacent rows of a certain column. In a 
row-oriented database, values in a row of a 
table are not likely to be very similar; 
therefore, they cannot be compressed as 
efficient as in a column-oriented database. 



Database Systems Journal vol. I, no. 2/2010                                                                                               9 

Concerning the repository presented in 
figures 1 and 2, there is no doubt that many 
repeated values will be found within the 
CITY column, but no repetition will be 
found between CITY and another attribute 
in a row. 

Data loading is a faster process if it’s 
executed in a column-oriented database than 
in a row-oriented one. As known, to load 
data in a data warehouse involves to perform 
more activities. Data is extracted from 
source systems and loaded into a staging 
area. This is the place where data 
transformations and joins are performed in 
order to denormalize data and load it into 
the data warehouse as fact and dimension 
tables. Then the needed indexes and views 
are created. In a row-oriented structure, all 
data in a row (record) is stored together, and 
indexes are built taking into consideration 
all the rows. In a column-oriented structure, 
data of each column is stored together and 
the system allows the parallel loading of the 
columns, ensuring a shorter time for data 
loading. 

Taking into consideration the features 
presented above, it can be stated that a 
column-oriented database is a scalable 
environment that keeps providing fast 
queries when the volume of data, the 
number of users and the number of 
simultaneous queries are increasing. 

But this thing doesn’t mean that all 
repositories have to be built in a columnar 
manner. A column-oriented architecture is 
more suitable for data warehousing, with 
selective access to a small number of 
columns, while a row-oriented one is a 
better solution for OLTP systems. For an 
OLTP system, which is heavily loaded with 
interactive transactions, a row-oriented 
architecture is well-suited. All data for a 
certain row is stored as a block. In such an 
architecture, all the attributes of a record are 
written on disk with a single command, this 
thing ensuring a high performance for 
writing operations. Usually, an operation in 
such a system creates, queries or changes an 
entry in one or more tables. For an OLAP 
(On-Line Analytical Processing) system, 

designed for analytical purposes, which 
involve processing of a large number of 
values of few columns, a column-oriented 
architecture is a better solution. A data 
warehouse, which is the central place of an 
analytical system, must be optimized for 
reading data. In such an architecture, data 
for a certain column is stored as a block, so 
the analytical queries, which usually 
aggregate data along columns, are 
performed faster. A column-oriented system 
reads only the columns required for 
processing a certain query, without bringing 
into memory irrelevant attributes. Such an 
approach provides important advantages 
concerning the system performance, because 
typical queries involve aggregation of large 
volumes of data [8]. 

 
5. Examples of column-oriented 

database systems 

Besides the column-oriented approach, 
another important innovation applied in data 
warehousing consists in the way in which 
data is processed. Two major techniques are 
used to design a data warehouse 
architecture: symmetric multiprocessing 
(SMP) and massively parallel processing 
(MPP). It couldn’t be certified the 
superiority of one approach against the 
other. Each of these solutions has its own 
supporters, because both of them are valid 
approaches and, when properly applied, lead 
to notable results. 

Two database systems are presented in 
the next sections, each of them using one of 
the two types of architecture. 

 

5.1.Sybase IQ 

Sybase IQ is a high-performance 
decision support server designed specifically 
for data warehousing. It is a column-
oriented relational database that was built, 
from the very beginning, for analytics and 
BI applications, in order to assist reporting 
and decision support systems. This fact 
offers it several advantages within a data 
warehousing environment, including 
performance, scalability and cost of 
ownership benefits. 



10                                                                   Column-Oriented Databases, an Alternative for Analytical Environment 

A Sybase IQ database is different from a 
conventional relational database, because its 
main purpose is to allow data analysis and 
not its writing or updating. While in a 
conventional database the most important 
thing is to allow many users to update the 
database instantly and accurately, without 
interfering with one another, in a Sybase IQ 
database the most important thing is to 
ensure fast query response for many users. 

Sybase IQ has a column-oriented 
structure and has its own indexing 
technology that ensures high performance to 
reporting and analytical queries, which are 
performed, as its developers state, up to 100 
times faster than in a traditional DBMS. 
Sybase IQ offers enhanced features for data 
loading. Its flexible architecture ensures that 
the system will provide rapidly the 
requested information, within seconds or 
minutes at most, no matter how many 
queries are issued. 

Sybase IQ has enhanced compression 
algorithms, which reduce the disk space 
necessary for data storing from 30 to 85 
percent, depending on data’s structure. A 
significant cost reduction results due to this 
fact. As already mentioned, storing data in a 
column-oriented manner increases the 
similarity of adjacent records on disk, and 
values within a column are often quite 
similar to each other. More tests confirmed 
that Sybase IQ requires 260 Terabytes of 
physical storage for storing 1000 Terabytes 
of row input data. A row-oriented database 
requires additional storage for indexes and, 
in the example above, this additional storage 
can reach up to 500 Terabytes [2]. In 
addition, Sybase IQ allows operating 
directly with compressed data [9], with a 
positive impact on processing speed. 

As opposed to traditional databases, 
Sybase IQ is easier to maintain, and the 
tuning needed to get a higher performance 
requires less time and hardware resources. It 
doesn’t need specialized schemas 
(dimensional modeling) to perform well. 
Sybase IQ is built upon open standards, so 
the integration and interoperability with 
other reporting systems and dashboards are 

easy to achieve. In order to enhance the 
performance of ad-hoc queries, it delivers 
more specialized indexes, such as: indexes 
for low cardinality data, grouped data, range 
data, joined columns, textual analysis, real-
time comparisons for Web applications, date 
and time analysis [10]. Furthermore, every 
field of a row can be used as an index, 
without the need to define conventional 
indexes. Due to these indexes, analytical 
queries focus on specific columns, and only 
those columns are loaded into memory. This 
reduces very much the need for expensive, 
high performance disk storage and, at the 
same time, the number of I/O operations. 

Offering an enhanced scalability, 
Sybase IQ can be used by a large number of 
users – hundreds and even thousands – 
which can access vast volumes of data, from 
a few gigabytes to several hundred 
terabytes. 

Sybase IQ offers a fast and flexible 
access to information. As already 
mentioned, it is designed for query 
processing and ad-hoc analysis. As opposed 
to traditional data warehouses, it does not 
require data to be pre-aggregated in order to 
analyse it. Therefore, users can efficiently 
and quickly analyse atomic level data. With 
Sybase IQ users can analyse the business 
performance and can track the company’s 
KPI (key performance indicators). 
Comparing with other products, it provides 
better solutions for measuring the business 
results, managing the customer relationship 
and ensuring financial controls. 

Several intelligent features are 
integrated in Sybase IQ architecture. These 
features, such as the use of symmetric 
multiprocessing (SMP), enhance database’s 
performance and reduce its maintenance 
overhead. A SMP architecture offers an 
increased performance because all 
processors can equally access the database’s 
tables. 

Sybase IQ architecture (figure 3) 
consists of multiple SMP nodes. Some of 
them are used only for reading data (read-

only nodes), while other can be used both 
for reading and writing data (read/write 



Database Systems Journal vol. I, no. 2/2010                                                                                               11 

nodes). However, each node can be flexibly 
designated as a read or write node, 
according to the requirements at a given 
moment. Thus, if an overnight batch has to 
be executed in order to load or update a 
large volume of data, it’s a good idea to 
make all the read/write nodes to operate as 
write nodes, even if they run as read nodes 
during the day. In addition, this architecture 
can be scaled up incrementally, by adding 
new nodes as needed. 

As shown in figure 3, Sybase columnar 
store allows storing data in more 

repositories, depending on its age, and it can 
be easily scaled out. Data can be loaded 
through real time loads or batch ETL 
(Extract, Transform, Load) processes. 
Starting with the release of version 15 of 
Sybase IQ, a new “load from client” option 
has been added. This option allows loading 
data from external sources, via ODBC, 
JDBC, ADO.Net, OLE DB and DBLib. 
Data, which can be encrypted through 
different methods, is rapidly accessed for 
analytical or reporting purposes. 
 

 
Fig. 3. Sybase IQ architecture 

(source: [10]) 
 

Sybase IQ enables data to be managed 
more efficiently than in a traditional 
database, built in a row-oriented approach. 
Complex analyses are run much faster. High 
data compression reduces storage costs, and 
vast volumes of data can be processed much 
more quickly. 

 
5.2.Vertica 

To gain competitive advantages and 
comply with new regulations, companies are 

obliged to develop enterprise data 
warehouses and powerful applications able 
to respond to more and more ad-hoc queries 
from an increasing number of users that 
need to analyse larger volumes of data, often 
in real time. 

Vertica Analytic Database is a DBMS 
that can help in meeting these needs. It is a 
column-oriented database that was built in 
order to combine both column store and 
execution, as opposed to other solutions that 



12                                                                   Column-Oriented Databases, an Alternative for Analytical Environment 

are column-oriented only from storage point 
of view. 

Designed by Michael Stonebraker, it 
incorporates a combination of architectural 
elements – many of them which have been 
used before in other contexts – to deliver a 
high-performance and low-cost data 
warehouse solution that is more than the 
sum of its elements. 

Vertica is built in a massively parallel 
processing (MPP) architecture. In a MPP 
architecture, processors are connected with 
certain sets of data, data is distributed across 
the nodes of the network, and new 
processors can be added almost without 
limit. As data is partitioned and load into a 
server cluster, the data warehouse performs 
faster. Due to the MPP technology, the 
system performance and storage capacity 
can be enhanced simply by adding a new 
server to the cluster. Vertica automatically 
takes advantages of the new server without 
the need for expensive and time consuming 
upgrades. 

While many of the new data warehouses 
use only MPP technology or columnar 
approach, Vertica is the only data warehouse 
that includes both innovations, as well as 
other features. It is designed to reduce I/O 
disk operations and is written natively to 
support grid computing. 

Because of the columnar approach, 
which reduces the expensive I/O operations, 
queries are 50 to 200 times faster than a 
row-oriented database. Its MPP architecture 
offers a better scalability, that can be 
achieved by adding new servers in the grid 
architecture. 

In order to minimize the disk space 
needed to store a database, Vertica uses 
more compression algorithms, depending on 
data type, cardinality and sort order. For 
each column, the proper algorithm is 
automatically chosen, based on a sample of 
the data [11]. As data into a column is 
homogenous, having the same type, Vertica 
provides a compression ratio from 8 to 13 
time relative to the size of the original input 
data. 

Vertica decomposes the logical tables 
and physically stores them as groups of 
columns named “projections”. According to 
this concept, data is stored in different ways, 
similar to materialized views. Each 
projection contains a subset of the columns 
of one or more tables, and is sorted on a 
different attribute. Vertica automatically 
selects the proper projection in order to 
optimize query performance. Due to the 
effective compression algorithms used by 
Vertica, multiple projections can be 
maintained, which concurs to the 
performance improvement of a large range 
of queries, including ad-hoc queries needed 
for exploratory analysis. 

On the other hand, these projections 
serve as redundant copies of the data. 
Because data is compressed so efficiently, 
Vertica can use the disk space to store these 
copies to ensure fault tolerance and to 
improve concurrent and ad-hoc query 
performance. Partitioning data across the 
cluster, Vertica ensures that each data 
element is stored on two or more nodes. 
Thus, an intelligent data mirroring is 
implemented, named K-Safety, where k is 
the number of node failures that a given set 
of projections will not affect the system 
availability. In order to guarantee K-Safety, 
k+1 replicas of all projections are built. 
Each replica has the same columns, but they 
may have different sort order. K-Safety 
allows requests for data stored into failed 
nodes to be satisfied by corresponding 
projections on other nodes. Once a failed 
node is restored, projections on the other 
nodes are automatically used to repopulate 
its data. 

The value of k has to be configured so 
that a proper trade-off between hardware 
costs and availability guarantees to be met. 
If necessary, a new node can be added in the 
grid, and Vertica will automatically allocate 
a set of objects to that node and it can begin 
processing queries, increasing database 
performance [12]. Conversely, a node can 
be removed and the database will continue 
to work, but at a lower rate. 



Database Systems Journal vol. I, no. 2/2010                                                                                               13 

As shown in figure 4, a single Vertica 
node is organized into a hybrid store 
consisting of two distinct storage structures: 
the Write-Optimized Store (WOS) and the 
Read-Optimized Store (ROS). Generally, 

the WOS fits into main memory and is 
designed to efficiently support insert and 
update operations. Data is stored as 
collections of uncompressed and unsorted 
columns, maintained in update order. 

 
Fig. 4. Vertica storage model 

(source: [11]) 
 

An asynchronous background process 
called the Tuple Mover moves data from 
WOS into the permanent disk storage in the 
ROS. The Tuple Mover operates on the 
entire WOS, sorting many records at a time 
and writing them to the ROS as a batch. 
Data in the ROS is sorted and compressed, 
so it can be efficiently read and queried. 

Queries and updates do not interfere 
with one another. Updates are collected in 
time-based buckets called epochs. New 
updates are grouped in the current epoch 
until the transaction is committed. Data in 
older epochs is available for querying and 
moving into the ROS. 

Because of the grid computing 
architecture, a query can by initiated on any 
node of the network. Vertica query planner 

decomposes the query according to the data 
stored into the involved nodes, and sends 
them the appropriate subqueries. Then it 
collects each node’s partial result and 
composes them in order to offer to the 
requester the final answer. 

In [13] a comparison is made between a 
1.5 terabytes row-oriented data warehouse 
and a column-oriented database containing 
the same data and managed by Vertica 
Analytic Database. The results are presented 
in the table 1 bellow. 

Query Update 

0 - 3 4 - 9 …... N-3 N N-1 N-2 

ROS WOS 

Tuple Mover 

Current 
epoch 



14                                                                   Column-Oriented Databases, an Alternative for Analytical Environment 

 
Table 1. Advantages of Vertica Analytic Database (source: [13]) 

 Row-oriented data 

warehouse 

Vertica Analytic 

Database 

Vertica advantages 

Avg query response 
time 

37 minutes 9 seconds 270x faster answers 

Reports per day 30 1,000 33x more reports 

Data availability Next day 1 minute Real-time views 

Hardware cost $1.4M 
(2*6 servers + SAN) 

$50,000 
(6 HP ProLiant 
servers) 

1/28th of the 
hardware, built-in 
redundancy 

 
All those presented above enable 

Vertica to manage larger volumes of 
historical data, analyse data at any level of 
detail, perform real-time analyses, conduct 
ad-hoc and short-lived business analytical 
projects, and build new analytic Software as 
a Service (SaaS) business. 

 
6. Conclusions 

For applications that write and update 
many data (OLTP systems), a row-oriented 
approach is a proper solution. In such an 
architecture, all the attributes of a record are 
placed contiguously in storage and are 
pushed out to disk through a single write 
operation. An OLTP system is a write-
optimized one, having a high writing 
performance. 

In contrast, an OLAP system, mainly 
based on ad-hoc queries performed against 
large volumes of data, has to be read-
optimized. The repository of such a system 
is a data warehouse. Periodically (daily, 
weekly, or monthly, depending upon how 
current data must be), the data warehouse is 
load massively. Ad-hoc queries are then 
performed in order to analyse data and 
discover the right information for the 
decision making process. And for analytical 
applications, that read much more than they 
write, a column-oriented approach is a better 
solution. 

Nowadays, data warehouses have to 
answer more and more ad-hoc queries, from 
a greater number of users which need to 
analyse quickly larger volumes of data. 

Columnar database technology inverts 
the database’s structure and stores each 

attribute separately, fact that eliminates the 
wasteful retrieval as queries are performed. 
On the other hand, much more data can be 
loaded in memory, and processing data into 
memory is much faster. 

Column-oriented databases provide 
faster answers, because they read only the 
columns requested by users’ queries, since 
row-oriented databases must read all rows 
and columns in a table. Data in a column-
oriented database can be better compressed 
than those in a row-oriented database, 
because values in a column are much more 
homogenous than in a row. The compression 
of a column-oriented database may reduce 
its size up to 20 times, this thing providing a 
higher performance and reduced storage 
costs. Because of a greater compression rate, 
a column-oriented implementation stores 
more data into a block and therefore more 
data into a read operation. Since locating the 
right block to read and reading it are two of 
the most expensive computer operations, it’s 
obviously that a column-oriented approach 
is the best solution for a data warehouse 
used by a Business Intelligence system 
developed for analytical purposes. 
 
 
 
 
 
 
 
 
 
 
 



Database Systems Journal vol. I, no. 2/2010                                                                                                          15 

References 

 
[1] Carl Olofson, The Third Generation of 

Database Technology: Vendors and 
Products That Are Shaking Up the 
Market, 2010, www.idc.com 

[2]  Sybase, Sybase IQ: The Economics of 
Business Reporting, White paper, 
2010, 
www.sybase.com/files/White_Papers/
Sybase-IQ-Business-Reporting-
051109-WP.pdf 

[3] David Loshin,  Gaining the Performance 
Edge Using a Column-Oriented 
Database Management System, Sybase 
white paper, 2009, www.sybase.com 

[4] Sybase, A Definitive Guide to Choosing 
a Column-based Architecture, White 
paper, 2008, www.information-
management.com/white_papers/10002
398-1.html 

[5] William McKnight, Evolution of 
Analytical Platforms, Information 
Management Magazine, May 2009, 
www.information-
management.com/issues/2007_58/anal
ytics_business_intelligence_bi-
10015353-1.html 

[6]  Daniel Abadi, Column-Stores For Wide 
and Sparse Data, 3rd Biennial 
Conference  on Innovative Data 
Systems Research, January 7 – 10, 
2007, Asilomar, California, USA, 
http://db.csail.mit.edu/projects/cstore/a
badicidr07.pdf 

[7] Daniel Abadi, Samuel Madden, Nabil 
Hachem, Column-Stores vs. Row-
Stores: How Different Are They 
Really?, Proceedings of the 2008, 
ACM SIGMOD International 
Conference on Management of Data, 
Vancouver, Canada, 
http://portal.acm.org 

[8]   Mike Stonebraker, Daniel Abadi et al., 
C-Store: A column-oriented DBMS, 
Proceedings of the 31st VLDB 
Conference, Trondheim, Norway, 
2005,  
http://db.csail.mit.edu/projects/cstore/v
ldb.pdf 

[9] Daniel Tkach, When the information is 
the business, Sybase white paper, 
2010, 
www.sybase.com/files/white_papers 

[10]  Philip Howard, Sybase IQ 15.1, A 
Bloor InDetail Paper, 2009, www.it-
director.com/business/innovation 

[11] ***, Revolutionizing data warehousing 
in telecom with the Vertica Analytic 
Database, 2010, 
www.vertica.com/white-papers 

[12] ***, The Vertica Analytic Database 
technical overview, 2010, 

www.vertica.com/white-papers 
[13]   ***, Increasing Enterprise Data 

Warehouse Performance, Longevity 
and ROI with the Vertica Analytic 
Database, 2010, 
www.vertica.com/white-papers 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



16                                                                   Column-Oriented Databases, an Alternative for Analytical Environment 

Gheorghe MATEI has graduated the Faculty of Planning and Economic 
Cybernetics in 1978. He achieved the PhD in Economic Cybernetics and 
Statistics in 2009, with a thesis on Business Intelligence systems in the banking 
industry. After a long career in the IT department, now he is working in the 
accounting and reporting department in Romanian Commercial Bank. His fields 
of interest include Business Intelligence systems, data warehousing, decision 
support systems, collaborative systems. He is a co-author of the book “Business 

Intelligence Technology” (2010), as well as author and co-author of several 
articles in journals, international databases and proceedings of national and international 
conferences in the mentioned domains. 


