
Database Systems Journal vol. V, no. 3/2014 37

Comparative study on software development methodologies

Mihai Liviu DESPA
mihai.despa@yahoo.com

Bucharest University of Economic Studies

This paper focuses on the current state of knowledge in the field of software development
methodologies. It aims to set the stage for the formalization of a software development
methodology dedicated to innovation orientated IT projects. The paper starts by depicting
specific characteristics in software development project management. Managing software
development projects involves techniques and skills that are proprietary to the IT industry.
Also the software development project manager handles challenges and risks that are
predominantly encountered in business and research areas that involve state of the art
technology. Conventional software development stages are defined and briefly described.
Development stages are the building blocks of any software development methodology so it is
important to properly research this aspect. Current software development methodologies are
presented. Development stages are defined for every showcased methodology. For each
methodology a graphic representation is illustrated in order to better individualize its
structure. Software development methodologies are compared by highlighting strengths and
weaknesses from the stakeholder’s point of view. Conclusions are formulated and a research
direction aimed at formalizing a software development methodology dedicated to innovation
orientated IT projects is enunciated.
Keywords: software development, project management, development methodology

Introduction
The management process of a

software development projects follows
the basic rules of project management but
also includes particular features. A
software development project manager
has to deal with challenges and setbacks
that are proprietary to the IT industry.
Also in software development there are
benefits and strong points that help ease
the burden of management.

Software development projects are
notorious for frequently changing initial
planning and specifications. In order to
identify the main reasons for changing
specification during the development
stage of a software product debates were
started on LinkedIn project management
groups. Debates were initiated on 11
LinkedIn groups starting the discussion
with the following introduction: Software

development projects are notorious for
frequently changing initial planning and
specifications. What do you believe are the
main reasons for changing specifications
during the development stage? Project
managers responded on 3 out of the 11
groups. The 3 groups are: PMO – project
management office, Agile Project
Management Group and International
Society for Professional Innovation
Management. Based on the information
collected from the LinkedIn discussions and
on the author’s own experience as software
development project manager specifications
change due to the fact that:

 the project owner identifies new
business opportunities and decides to
integrate them into the software
being developed;

 due to the technical nature of
software development projects there
is a lack of shared understanding of

1

38 Comparative Study on Software Development Methodologies

expected outcomes;
 original planning was based on

specifications that were
misinterpreted by the project
manager or poorly illustrated by
the project owner;

 project team is unable to
implement planned functionalities
due to lack of expertise or
technological limitations;

 the context in which the software
is going to be used changes thus
generating the need for the
software to change;

 new technology or software
product is launched on the market.

Changing specifications has a negative
impact on the project management
process as it reduces predictability and
exercises pressure on the budget and
deadlines.

The software development field is
characterized by high dynamics of
technology and standards. Programming
languages evolve, new frameworks arise
and fall with astonishing speed, user
interfaces become more and more diverse
as software is required to work on a
larger array of devices. PHP server-side
scripting language registered 16 releases
on new and improved versions in 2014
alone [1]. The software development
community widely accepted Phalcon and
Laravel, as two of the most powerful
PHP frameworks. Both were released in
2012. The project manager has to keep up
with the latest trends in software

development in order to meet the project
owner’s requirements and in order
coordinate effectively the project team.

Software development projects involve
project teams that are made up of highly
skilled and highly trained individuals with
predominantly technical backgrounds.
Highly skilled and highly trained individuals
will require significant compensation for
their work and that will translate into high
man-hour or man-day rates. So the project
manager is under considerable pressure to
provide accurate time estimates in terms of
required man-days as every inconsistency
will generate significant additional costs.
Also highly skilled individuals don’t
integrate well in a team as they have a
tendency of being arrogant and self-
absorbed. The project manager should be
able to exploit their ego in the best interest
of the project and mitigate disputes and
opinion clashes that occur between team
members.

Software development projects are often
implemented by teams that have members
distributed all over the globe. Building
software does not require formal face-to-
face communication. Task assignment and
task tracking is done by using online
management tools like Pivotal Tracker,
Basecamp or Producteev. Code version
control is ensured by using versioning tools
like SVN or GIT. File sharing is
accomplished by using tools like Dropbox,
Google Drive or Box. Online meetings can
take place using Skype video conferences.

Table 1. Software development projects characteristics
Characteristic Positive Impact Negative Impact

frequently changing
specifications

-

jeopardize deadlines

results in exceeding the project
budget
causes stress and discontent for
the development team

high dynamics of
technology and standards

generates new
opportunities in terms of
design and codding

software can become obsolete
by the time it hits the market
software developers have to
invest a lot of time in

Database Systems Journal vol. V, no. 3/2014 39

researching new technologies

skilled workforce
increases the likelihood of
achieving innovative
results

high cost generated by human
resources

globally distributed teams

work can be performed
around the clock

monitoring and control
becomes more difficult

cultural diversity nurtures
creativity

integrating new code is more
challenging

Table 1 summarizes the impact that
software development characteristics have
on the project management and implicitly
on the project team. The only
characteristic that does not have a positive
impact is frequently changing of
specifications.

2. Software development stages
Building a software product is a process
consisting of several distinct stages. Each
stage has its own deliverables and is bound
by a specific time frame. Depending on the
project, certain stages gain additional
weight in the overall effort to implement
the software product.

Research is the stage where the project
owner, the project manager and the project
team gather and exchange information.
The project owner is responsible for
formulating requirements and passing them
on to the project manager. In order to
properly formulate requirements the
project owner has to first define a set of
goals. Then he has to envision the way a
software product will help him achieve
those goals. In the research stage the
project owner will try to find people or
companies with similar goals and
document the way those people or
companies acted upon fulfilling their goals.
The project manager is responsible for
receiving the requirements from the project
owner, evaluating them and passing them
to the project team as technical
specification. The project manager has to
be able to evaluate the requirements from
both a business perspective and a technical
perspective. The project manager has to
research market characteristics and user

behaviour patterns. The project team is
responsible for evaluating the requirements
from a technical perspective. The project
team will have to research the frameworks,
API’s, libraries, versioning tools and
hosting infrastructure that will be required
in order to build the software product.

Planning is the stage where all the
elements are set in order to develop the
software product. Planning starts with
defining the overall flow of the application.
Next step is to breakdown the flow into
smaller, easier to manage subassemblies.
For each subassembly a comprehensive set
of functionalities has to be defined. Based
on the required functionality a database
structure is designed. Taking into account
the overall flow of the application, the
subassemblies, functionalities and database
structure, the project manager together
with the project team have to choose the
technology that will be employed to
develop the application. Also the project
manager should decide on the best suited
management methodology and the proper
work protocol for the project at hand.

Design is the stage where the layout of the
application is created. Web applications
and mobile applications tend to grant more
impotence to layout than desktop
applications. Depending on the nature of
the application designs can range from
rough and functionality driven to complex
and artistic. An accounting application will
only require basic graphic design but an
online museum will require high end
design work. In an accounting application
design has to emphasize and enhance
functionality whereas in an online museum

40 Comparative Study on Software Development Methodologies

functionality has to be tailored in order to
fit the design. The graphic design can
overlap with the planning and with the
programming stage. The graphic design
stage is important because it will display to
the project owner a preview of the
application before it is actually built. At
this stage usually the project owner comes
up with new requirements that have to be
summited to research and planning.

Development is the stage where code is
written and the software application is
actually built. The development stage starts
with setting up the development
environment and the testing environment.
The development environment and the test
environment should be synchronized using
always the same protocol. Code is written
on the development environment and
uploaded on the test environment using the
synchronization protocol. Another
important aspect of the development stage
is progress monitoring. The project
manager has to determine actual progress
and evaluate it against the initial planning.
The project manager should constantly
update the project owner on the overall
progress. When writing code the software
developers should also perform debugging
operation in order to upload clean and bug
free updates on the testing environment.
Software developers should also comment
their code so that they can easily decipher
later or make it easy to understand for
other developers.

Testing is the stage where programming
and design errors are identified and fixed.
Programming errors are scenarios were the
application crashes or behave in a way it
was not supposed to according to the
designed architecture. Programing errors
also consist in security or usability issues.
If the application is vulnerable to attacks
and can therefore allow attackers access to
private data, then that is regarded as a
programming error. If users have problem
with slow response time from the
application than that also is a programming

issue. Design errors are actually
inconsistency between what the project
owner requested and what the project team
ended up implementing. Design errors
occur in the planning stage, have a
significant impact on the project and are
usually harder to fix. Identifying design
errors is considerably more efficient when
the project owner is involved as he is the
one that formulated the application
requirements.

Setup is the stage where the application is
installed on the live environment. The
setup stage precedes the actual exploitation
of the software product. The setup entails
configuring the live environment in terms
of security, hardware and software
resources. Back-up procedures are defined
and tested. The actual setup of the software
product includes copying the source code,
importing the database, installing third
party applications if required, installing
cron-jobs if required and configuring API’s
if required. Once the application is
installed it will go through another full
testing cycle. When testing is completed
content is added to the application.

Maintenance is the stage that covers
software development subsequent to the
application setup and also the stage
responsible for ensuring that the
application is running within the planned
parameters. Ensuring that the application is
running properly is done by monitoring the
firewall, mail, HTTP, FTP, MySQL and
SSH error logs. Also monitoring traffic
data will provide valuable input on
potential issues that may affect the
application’s performance. An important
part of the maintenance stage consists of
systematically testing functionalities for
errors that were not identified in the testing
stage or for issues that are not displayed in
the error logs. The maintenance stage also
provides the opportunity to add new
features of functionality to the software
application. Adding new code or changing
the old code will have to be submitted to

Database Systems Journal vol. V, no. 3/2014 41

research, planning, programing, testing and
setup.

The above mentioned stages are generally
agreed by the software development
community as being the cornerstones of
every software development project.
Depending of software development
methodology they may be found under
different naming conventions, they may be
overlapping changing order or missing
altogether.

3. Current software development
methodologies
A software development methodology is a
set of rules and guidelines that are used in
the process of researching, planning,
designing, developing, testing, setup and
maintaining a software product. The
methodology also includes core values that
are upheld by the project team and tools
used in the planning, development and
implementation process. This paper
reviews 20 of the most popular software
development methodologies and highlights

their core characteristics. The analysis
includes specifying the scale of the project
the methodology is suited for, the stage
project owner feedback is delivered and a
graphic representation of the methodology.
For coherence reasons stages defined in the
second section of the article are also used
in depicting the graphic representations of
the methodologies.

Waterfall is the first methodology
generally acknowledged as being dedicated
to software development. Its principals are
for the first time described by Winston W.
Royce even though the actual term
waterfall is not used in the article [24]. It
emphasizes meticulous planning and it
outputs comprehensive documentation.
The Waterfall methodology is linear-
sequential process where every stage starts
only after the previous has been completed.
Each stage has its own deliverables. The
Waterfall methodology is predictable and
values rigorous software planning and
architecture.

Fig. 1. Waterfall methodology

The project owner’s feedback is received
after the software application is completely
developed and tested. The Waterfall
methodology is suitable for small scale

software development projects where
requirements are clear and detailed
planning can be easily drafted for the entire
project.

42 Comparative Study on Software Development Methodologies

Prototyping is a methodology that evolved
out of the need to better define
specifications and it entails building a
demo version of the software product that
includes the critical functionality. Initial
specifications are defined only to provide
sufficient information to build a prototype.
The prototype is used to refine

specifications as it acts as baseline for
communication between project team and
project owner. The prototype is not meant
to be further developed into the actual
software product. Prototypes should be
built fast and most of the times they
disregard programming best practices [2].

 Fig. 2. Prototyping methodology

The project owner’s feedback is received
after the prototype is completed. The
Prototyping methodology is suitable for
large scale projects where is almost
impossible to properly define exhaustive
requirements before any actual codding is
performed. Prototyping methodology is
also suitable for unique or innovative
projects where no previous examples exist.

Iterative and incremental is a
methodology that relies on building the

software application one step at the time in
the form of an expanding model [3]. Based
on initial specification a basic model of the
application is built. Unlike the prototype,
the model is not going to be discarded, but
is instead meant to be extended. After the
model is tested and feedback is received
from the project owner specifications are
adjusted and the model is extended. The
process is repeated until the model
becomes a fully functional application that
meets all the project owner’s requirements.

Fig. 3. Iterative and incremental methodology

The project owner’s feedback is received
after each iteration is completed. The
Iterative and incremental methodology
emphasizes design over documentation and
is suitable for medium and large projects.

Spiral is a methodology that focuses on
identifying objectives and analysing viable
alternatives in the context well documented
project constrains [4]. The Spiral

methodology has 4 major phase: planning,
risk analysis, development and evaluation.
Project will fallow each phase multiple
times in the above mentioned order until
the software application is ready to be
setup on the live environment. The Spiral
methodology emphasizes risk analysis and
always evaluates multiple alternatives
before proceeding to implementing one.

Database Systems Journal vol. V, no. 3/2014 43

Fig. 4. Spiral methodology

The project owner’s feedback is received
after the first iteration of the spiral is
completed. The Spiral methodology is
suitable for medium and large scale
projects. It has also proven more effective
in implementing internal projects as
identifying risks proprietary to your own
organization is easier.

Rapid application development is a
development lifecycle designed to give

much faster development and higher-
quality results than those achieved with the
traditional methodologies. It is designed to
take the maximum advantage of powerful
development software [15]. Rapid
application development imposes less
emphasis on planning tasks and more
emphasis on development. Development
cycles are time boxed and multiple cycles
can be developed at the same time.

Fig. 5. Rapid application development methodology

The project owner’s feedback is received
after each module is completed. The Rapid
application development methodology is
suitable for small, medium and large scale

projects with the constraint that projects
have to be broken down into modules.

Extreme programming breaks the
conventional software development

44 Comparative Study on Software Development Methodologies

process into smaller more manageable
chunks. Rather than planning, analysing,
and designing for the entire project at once,
extreme programming exploits the
reduction in the cost of changing software
to do all of these activities a little at a time,
throughout the entire software
development process [5]. It enforces pair
programming where two developers use
the same computer. One is writing code

and the other is supervising. They change
roles at regular intervals. For reducing the
number of errors it relies heavily on unit
testing and developers are required to write
tests before writing the actual code. There
is a collective ownership code policy
where any developer can change any code
sequence even if it was not written by him.
The project owner is the one that decides
the priority of the tasks.

Fig. 6. Extreme programming methodology

Extreme programming methodology
requires that a represented of the project
owner is always with the development
team in order to have access to continuous
and relevant feedback. The Extreme
programming methodology is suitable for
small, medium and large scale projects.

V-Model methodology is a software
development process which is an extension
of the waterfall model [16]. It emphasizes
thorough testing by pairing each software
development stage with a matching phase
of testing.

Fig. 7. V-Model methodology

The project owner’s feedback is received
in the form of acceptance testing after the
entire application is completed. The V-
Model development methodology is

suitable for small and medium scale
projects.

Scrum is a methodology for incrementally
building software in complex

Database Systems Journal vol. V, no. 3/2014 45

environments [6]. Software requirements
are formulated and prioritized by the
product owner and are called stories. All
the stories make up the Product Backlog.
The Scrum methodology adopted a time
box approach where development cycles
known as Sprints take no more than 4
weeks and end with a working version of
the application. All the stories of a sprint
make up the Sprint’s Backlog. Progress is

assessed in daily meetings that are
confined to 15 minutes and are known as
Daily Scrum. Task assignment is not done
by the project manager or by any other
individual. Scrum development teams are
self-organized and task assignment is a
process where every team member is
involved. The team efforts are kept on
track by a Scrum Master.

 Fig. 8. Scrum methodology

The project owner’s feedback is received
at the end of each sprint. The Scrum
methodology is suitable for small, medium
and large scale projects.

Cleanroom is a methodology that focuses
on defect prevention. The motivation for
this approach is the fact that defect
prevention is much less expensive than
defect removal. The goal of the Cleanroom

methodology is to construct software with
no defects during development [7].
Cleanroom methodology relies on a box
structure method to design the software
product. Quality control is performed by
using mathematic models and it also
introduces a statistical approach to testing.
Developers do not test the code that is the
testing team’s responsibility.

Fig. 9. Cleanroom methodology

The project owner’s feedback is received
at the end of each increment. The
Cleanroom methodology is suitable for
small, medium and large scale projects.

Dynamic systems development
methodology is focused on developing
application systems that truly serve the

46 Comparative Study on Software Development Methodologies

needs of the business [17]. Dynamic
systems development methodology is an
iterative development model that uses a
timebox approach and MoSCoW task
prioritization. It defines strict quality

standards at the beginning of the project
and it sets non-negotiable deadlines.
Testing is done early and continually
throughout the entire development cycle.

Fig. 10. Dynamic systems development methodology

Project team and project owner share a
workplace, physical or virtual, in order to
facilitate efficient feedback at every stage
of the project. The Dynamic systems
development methodology is suitable for
medium and large scale projects.

Rational unified process methodology
provides a disciplined approach to software
development. It comes with several out-of-

the-box roadmaps for different types of
software projects and it provides guidance
for all aspects of a software project. It does
not require the project team to engage in
any specific activity or produce any
specific artefact. It provides guidelines that
help the project manager tailor the process
if none of the out-of-the-box roadmaps
suits the project or organization [8].

Fig. 11. Rational unified process methodology

The project owner’s feedback is received
as agreed at the start of the project as the
methodology does not enforce a rule on
project team – project owner collaboration.
The Rational unified process methodology

is suitable for small, medium and large
scale projects.

Lean software development is a product
development paradigm with an end-to-end

Database Systems Journal vol. V, no. 3/2014 47

focus on creating value for the project
owner and for the end user, eliminating
waste, optimizing value streams,
empowering people and continuously
improving [9]. Value is defined as
something that the project owner would
pay for. Anything that is not adding value
is considered waste and has to be
discarded. Lean software development
delivers early iterations of working code. It

also insures that team members are
motivated by empowering them to make
significant decisions regarding the
application. The Lean software
development methodology does not
enforce a certain process in terms of
conducting the project. Project manager
and team members are free to use any
process they see fit as long as it stays true
to core lean development principals.

Fig. 12. Lean software development methodology

The project owner’s feedback is central to
the Lean software development
methodology. The Lean software
development methodology is suitable for
small, medium and large scale projects.

Test-driven development is a
methodology developed around unit
testing. Before writing any actual code the
developers write automated test cases for

new functionality. If the tests work then
there is no need to write any code as the
functionality already exists, it was just not
know to the developer. This scenario is
often encountered when dealing with
legacy code. If tests do not compile then
the developer will write the code and run
the tests again. The process is repeated
until all requirements are met [10].

Fig. 13. Test-driven development methodology

The project owner’s feedback is received
after the code tested successfully. The
Test-driven development methodology is
suitable for medium and large scale

projects. It is also recommended for
scenarios where developers have to work
with legacy code.

48 Comparative Study on Software Development Methodologies

Behaviour-driven development
methodology is developed around
acceptance testing. The project owner
writes the requirements in the form of
acceptance tests using a standard format.
Requirements are defined as user stories
and include a title, a narrative part and
acceptance criteria [18]. Based on the

acceptance test scenarios developers will
implement functionality. When
functionality in developed it is tested using
the same acceptance testing scenarios. If it
passes the tests code is moved on the live
environment. The entire process is
repeated until all requirements are met.

Fig. 14. Behaviour-driven development methodology

The project owner’s feedback is received
after the code tested successfully. The
Behaviour-driven development
methodology is suitable for small, medium
and large scale projects. It is also
recommended for scenarios where
developers have to work with legacy code.

Feature-driven development is a
methodology focused on actual
functionality. Each feature in the Feature-
driven development methodology reads as
a requirement which is understandable by
the project owner, it has true business
meaning and describes true business value
[11].

Fig. 15. Feature-driven development methodology

The project owner’s feedback is received
after the application is already setup but
constant interaction between development
team and project owner takes place
throughout the entire length of the project.
The Feature-driven development
methodology is suitable for small, medium
and large scale projects.

Model-driven engineering is a complex
methodology that uses domain models as

ways of handling requirements [12]. Based
on project owner’s requirements a
metamodel is define. The metamodel is
actually a platform independent model that
can be migrated onto any environment.
UML is usually used for building the
metamodel. The metamodel is then
converted into a model that is specific to a
certain platform. Based on the model the
actual code is then generated.

Fig. 16. Model-driven development methodology

Database Systems Journal vol. V, no. 3/2014 49

The project owner’s feedback is received
after the code tested successfully. The

Model-driven engineering methodology is
suitable for small, medium and large scale
projects. It is also recommended for
projects that will have long exploitation
period as metamodels can be easily
migrated and adapted to new technologies.

Crystal Methods is a family of
methodologies that developed around the
theory that people, and not tools or

process, are the most important factor in
any software project. Crystal Methods is a
myriad of methodology elements and does
not tackle every project in the same
manner but instead uses custom tailored
processes and tools depending on the
project’s profile and scale. Large or safety
critical projects require more methodology
elements than small non-critical projects.
With Crystal Methods, organizations only
develop and use as much methodology as
their business needs demand [19]. Crystal
uses an iterative approach but does not
enforce a release with every iteration.

Fig. 17. Crystal Methods methodology

The project owner’s feedback is received
after each iteration is finished. The Crystal
Methods methodology is suitable for small,
medium and large scale projects. It has a
different approach depending on the scale
of the project.

Joint application development is a
methodology that focuses on system

requirement determination by involving
end users, project owner and project team
in a series of freely interacting meetings
[13]. End user and project owner are also
heavily involved in the design and
development stages. Joint Application
Development methodology uses
prototyping as the basis for the actual
software development.

Fig. 18. Joint application development methodology

The project owner’s feedback is received
at every JAD meeting and after the
prototype is finished. The Joint application

development methodology is suitable for
medium and large scale projects.

50 Comparative Study on Software Development Methodologies

Adaptive software development is a
methodology that was built as a response
to an economy that is increasingly
changing and evolving [14]. Adaptive
software development is based on iterative
development and is oriented on the

project’s mission. It is a timeboxed model
that values delivering features and accepts
changes in all stages of the project.
Adaptive software development responds
accepts risks and handles them efficiently.

Fig. 19. Adaptive software development methodology

The project owner’s feedback is received
after each iteration is finished. The
Adaptive software development
methodology is suitable for small, medium
and large scale projects.

Open source software development is a
decentralized methodology with no central
authority, project owner, no compensation
for the project team, no accountability and
yet with a high success rate [20]. Open
source software development defies
traditional economic theory as thousands

of programmers work on writing,
debugging and testing software without
expecting any direct compensation. Most
open source software developers will never
meet face to face and yet find a way to
collaborate in harmony. Open source
software development has the advantage of
comprehensive testing as code is reviewed
by a large number of developers and also
benefits from around the clock work on the
project as developers are geographically
scattered all around the globe.

Fig. 20. Open source software development methodology

In open source software development there
is no project owner to provide feedback.

The methodology is suitable for small,
medium and large scale projects.

Database Systems Journal vol. V, no. 3/2014 51

Microsoft Solutions Framework is a
deliberate and disciplined approach to
technology projects based on a defined set
of principles, models, disciplines,
concepts, guidelines, and proven practices
from Microsoft [21]. Microsoft Solutions
Framework methodology has versions for

both lightweight and heavyweight
implementation so it can be applied in an
agile manner or using a waterfall approach.
It fosters open communication and
empowers team members but at the same
time establishes clear accountability and
shared responsibility.

Fig. 21. Microsoft Solutions Framework methodology

The project owner’s feedback is received
after deployment. The Microsoft Solutions
Framework is suitable for small, medium
and large scale projects.

Apart from the above mentioned
methodologies a further research of the
topic might consider analysing the
following methodologies:

 Dual Vee model – a variation of the
V model;

 Evolutionary project management –
forerunner of the current agile
methodologies [23];

 Agile Unified Process – a
simplified version of the Rational
Unified Process;

 Essential Unified Process – a
variation of the Rational Unified
Process;

 Open Unified Process - a variation
of the Rational Unified Process
[22].

They were not included in the current
comparative study as they are variation of
other methodologies and their
characteristics were already submitted to
analysis.

4. Strengths and weaknesses
Software development methodologies
follow one of two paths: heavyweight or
lightweight. Heavyweight methodologies
are derived from the waterfall model and
emphasizes detailed planning, exhaustive
specifications and detailed application
design. Lightweight methodologies are
derived from the Agile model and promote
working software, individuals and
interactions, acceptance of changing
requirements and user feedback. The
Microsoft Solutions Framework includes
variations for both heavyweight and
lightweight philosophies.

Table 2. Software development methodologies characteristics

Methodology Characteristics Strengths Weaknesses

Waterfall

- comprehensive
documentation
- meticulous planning
- linear-sequential process
- each phase has its own
deliverables

- easy to manage
- easy to understand for the
project owner and team

- working code is delivered
late in the project
- does not cope well with
changing requirements
- low tolerance for design
and planning errors

Prototyping

- build one or more demo
versions of the software
product
- project owner is actively
involved
- prototypes are meant to be
discarded

- accurate identification of
application requirements
- early feedback from the
project owner
- improved user experience
- early identification of
missing or redundant

- leads to unnecessary
increase of the
application’s complexity
- increased programming
effort
- costs generated by
building the prototype

52 Comparative Study on Software Development Methodologies

- writing code is valued over
writing specifications

functionality

Iterative and
incremental

- build an initial model that
is meant to be extended in
successive iterations
- emphasizes design over
documentation
- project owner is actively
involved

- continuous feedback
from the project owner
- multiple revisions on the
entire application and on
specific functionality
- working code is delivered
early in the project

-each iteration is a rigid
structure that resembles a
small scale waterfall
project

Spiral

- focuses on objectives,
alternatives and constrains
- has 4 major phase:
planning, risk analysis,
development and evaluation
- emphasises risk analysis
- evaluates multiple
alternatives before
proceeding to the planning
stage

- working code is delivered
early in the project
- minimizes risk
- strong documentation

- costs generated by risk
handling
- dependent on accurate
risk analysis

Rapid application
development

- less emphasis on planning
tasks and more focus on
development
- timebox approach

- applications are
developed fast
- code can be easily reused

- poor documentation

- high development costs
- code integration issues
- application has to be
broken into modules

Extreme
programming

- pair programming
- unit testing
- fast consecutive releases
- collective ownership
- on-site project owner
- open workspace
- project owner decides the
priority of tasks

- application gets very fast
in the production
environment
- frequent releases of
working code
- reduced number of bugs
- smooth code integration
- continuous feedback
from the project owner

- lack of documentation
- developers reluctance to
pair programing
- developers reluctance to
write tests first and code
later
- requires frequent
meetings
- lack of commitment to a
well-defined product leads
to project owner reluctance

V-Model

- introduces testing at every
development stage
- highlights the importance
of maintenance

- low bug rate
-easy to understand and
use

- vulnerable to scope creep
- relies heavily on the
initial set of specifications

Scrum

- iterative development
- timebox approach known
as Sprints
- daily meetings to assess
progress known as Daily
Scrum
- self organizing
development team
- tasks are managed using
backlogs; product backlog
and sprint backlog

- deliver products in short
cycles
- enables fast feedback
- rapid adaptation to
change

- lack of documentation
- requires experienced
developers
- hard to estimate at the
beginning the overall effort
required to implement
large projects; thus cost
estimates are not very
precise

Cleanroom

- iterative development
- box structure method
- using mathematic models
in quality control
- statistical approach to
testing

- considerable reduction in
bug rate
- higher quality software
products

- increased development
costs
- increased time to market
for software product
- requires highly skilled
highly experienced
developers

Dynamic systems
development

- iterative development
- MoSCoW prioritisation of

- focusses on addressing
effectively the business

- requires large project
teams at it has multiple

Database Systems Journal vol. V, no. 3/2014 53

method tasks
- timebox approach
- non-negotiable deadlines
- strict quality standards set
at the beginning of the
project
- project team and project
owner share a workplace
(physical or virtual)
- test early and continually

needs
- post project
implementation
performance assessment
- complete documentation
- active user involvement

roles to cover
- requires very skilled
developers

Rational Unified
Process

- iterative development
- prioritize risk handling
- adequate business
modelling
- change management
- performance testing

- accurate and
comprehensive
documentation
- efficient change request
management
- efficient integration of
new code
- enables reuse of code and
software components

- requires highly qualified
professionals
- development process is
complex and poorly
organized

Lean software
development

- iterative development
- discards all components
that do not add value to the
product
- amplify learning
- customer focus
- team empowerment
- continuous improvement

- reduced project time and
cost by eliminating waste
- early delivery of working
code
- motivated project team

- project is highly
dependable on individual
team members
- a team member with
strong business analysis
skills required

Test-driven
development

- unit testing
-testing scenarios are
developed before actual
coding
- repeated short development
cycles
- suitable for debugging
legacy code developed with
other techniques

- less time spent on
debugging
- higher quality code
- by designing tests the
developer empathizes with
the user
- less defects get to the end
user

- tests are focused on
syntax and overlook actual
functionality
- requires more code than
most methodologies
- the developer is actually
the one doing the testing
- writing unit tests
increases costs

Behavior-driven
development

- unit testing
- focuses on business value
- genuine collaboration
between business and
development

- easy to maintain
- usability issues are
discovered early
- reduced defect rate
- easy to integrate new
code

- project owners are
reluctant to write
behaviour scenarios

Feature-driven
development

- iterative development
- application is broken down
into features
- no feature should take
longer than two weeks to
implement
- uses milestones to evaluate
progress

- multiple teams can work
simultaneously on the
project
- scales well to large teams
- good progress tracking
and reporting capabilities
- easy to understand and
adopt

- individual code
ownership
- iterations are not well
defined

Model-driven
engineering

- uses domain model
- models are automatically
transformed into working
code
- knowledge is encapsulated
in high level models
- emphasizes reuse of
standardized models

- high degree of
abstraction
- increased productivity
- delivers products with a
high degree of
compatibility and
portability
- shorter time to market

- requires considerable
technical expertise
- documentation is
readable only by domain
experts
- is difficult to implement
version control on
modelling environment

54 Comparative Study on Software Development Methodologies

- lowers maintenance costs

Crystal Methods
Methodology

- focusses on people and
skill and not on process
- more than one iteration in a
release
- different approaches
depending on the projects
size and criticality

- easy to implement
- frequent delivery of
working code
- developers have
dedicated timeslots to
reflect on possible code
improvements

- critical decisions
regarding the architecture
of the application are made
by individuals and not by
the entire team

Joint Application
Development

- emphasises system
requirement determination
- involves the project owner
and end user in the design
and development
- JAD meetings
- prototyping

- accelerates design
- enhances quality
- promotes teamwork with
the customer
- creates a design from the
customer's perspective
- lowers maintenance costs

- relies heavily on the
success of the group
meetings
- does not have a
documented approach for
stages that follow system
requirements
determination and design

Adaptive software
development

- iterative development
- focusses on the final goal
of the project
- feature based
- timeboxed
- risk driven

- effective handling of
change and scope creep
- easy to understand and
implement
- enables innovation

- low risk handling
- uses assumptions and
predictions
- lacks tangible
documentation

Open source
software
development

- iterative development
- geographically distributed
teams
- collaborative work

- low costs
- highly motivated and
dedicated developers
- comprehensive testing as
code is reviewed by a large
number of developers

- low accountability for
submitted code
- no central management
authority
- unstructured approach to
development

Microsoft
Solutions
Framework

- has versions for both
lightweight and heavyweight
implementation
- fosters open
communication
- empower team members
and establishes clear
accountability and shared
responsibility

- supports multiple process
approaches
- solid risk handling
policies
- built to respond
effectively to change
- reduces team size

- difficult to setup and
configure

Out of a total of 20 software development
methodologies that were analysed 6 were
based on the heavyweight model and 13
were based on the lightweight model. One
methodology offered support for both a
lightweight and a heavyweight approach.
In order to choose the appropriate software
development methodology for a project
one should consider: project owner profile,
developer’s technical expertise, project
complexity, budget and deadlines. An
innovative software development project is
difficult to match with one of the existing
development methodologies. Innovative
software development projects require
writing comprehensive documentation in
order to patent any original output that
might result. It also requires a considerable

degree of flexibility as changes occur
often.

5. Conclusions
Software development methodologies
follow two major philosophies:
heavyweight and lightweight.
Heavyweight methodologies are suitable
for projects where requirements are
unlikely to change and the software
complexity allows for detailed planning.
Heavyweight methodologies are easy to
understand and implement. They provide
solid documentation and appeal to project
owners because they are well structured
and showcase tangible deliverables for
every stage of the project. With
heavyweight methodologies the project

Database Systems Journal vol. V, no. 3/2014 55

manager can easily perform tracking,
evaluation and reporting. The project
owner is considerably involved only in the
research and planning stages. Lightweight
methodologies are suitable for projects
were specifications are unclear or are
likely to change due to project internal or
external factors. Lightweight
methodologies are based on an incremental
approach were software is delivered in
multiple consecutive iterations, all of them
being functional versions of the
application. Lightweight methodologies
provide great flexibility and can easily
adapt to change. They promote early
delivery of working code, self-organizing
teams and adaptive planning. The project
owner is heavily involved in all the stages
of the project as its input and feedback is
critical for the success of lightweight
methodologies. When choosing a software
development methodology project owner
profile, developer’s technical expertise,
project complexity, budget and deadlines
must be taken into account. Often no
methodology will fit perfectly the profile
of a specific project. Then the best
matching methodology should be used or
in the case of experienced project teams
and project managers a combination of
methodologies could be introduced. In the
case of innovative software development
projects a new methodology is required.
This topic is a subject for further research
in the software development field.

6 Acknowledgment
This paper was co-financed from the
European Social Fund, through the
Sectorial Operational Programme Human
Resources Development 2007-2013,
project number
POSDRU/159/1.5/S/138907 "Excellence
in scientific interdisciplinary research,
doctoral and postdoctoral, in the economic,
social and medical fields -EXCELIS",
coordinator The Bucharest University of
Economic Studies.

References

[1] http://php.net/ChangeLog-5.php
[2] J. E. Cooling, T. S. Hughes, “The
emergence of rapid prototyping as a real-
time software development tool”,
Proceedings of the Second International
Conference on Software Engineering for
Real Time Systems, 18-20 Sep. 1989,
Cirencester, UK, Publisher: IET, 1989, pg.
60-64
[3] C. Larman, V. R. Basili, “Iterative and
Incremental Development: A Brief
History”, Computer, vol. 36, no. 6, pg. 47-
56, 2003, doi:10.1109/MC.2003.1204375
[4] B.W. Boehm, “A spiral model of
software development and enhancement”,
Computer, vol. 21, no. 5, pg. 61-72, 1988,
doi: 10.1109/2.59
[5] K. Beck, “Embracing change with
extreme programming”, Computer, vol. 32
, no.10, pg. 70 – 77, 1999, doi:
10.1109/2.796139
[6] L. Rising, N. S. Janoff, “The Scrum
Software Development Process for Small
Teams”, IEEE Software, vol. 17, no. 4, pg.
26-32, 2000, doi:10.1109/52.854065
[7] A. Spangler, “Cleanroom software
engineering-plan your work and work your
plan in small increments”, IEEE
Potentials, vol.15, no. 4, pg. 29 – 32, 1996,
doi: 10.1109/45.539962
[8] G. Pollice, Using the Rational Unified
Process for Small Projects: Expanding
Upon eXtreme Programming, Rational
Software White Paper, 2001
[9] C. Ebert, P. Abrahamsson, N. Oza,
“Lean Software Development”, IEEE
Software, vol. 29, no. 5, pg. 22-25, 2012,
[10] E. M. Maximilien, L. Williams,
“Assessing test-driven development at
IBM”, Proceedings. 25th International
Conference on Software Engineering,
ICSE 2003, 3-10 May 2003, Portland,
USA, Publisher: IEEE, 2003, doi:
10.1109/ICSE.2003.1201238, pg.564-569
[11] D. J. Anderson, Feature-Driven
Development, Microsoft Corporation, Oct.
2004
[12] J. Bezivin, Model Driven
Engineering: An Emerging Technical

56 Comparative Study on Software Development Methodologies

Space, International Summer School,
Summer School on. Generative and
Transformational Techniques. in Software
Engineering, 4-8 Jul. 2005, Braga,
Portugal, Publisher: Springer Berlin
Heidelberg, pg. 36-64, doi:
10.1007/11877028_2.
[13] E. W. Duggana, C. S. Thachenkaryb,
“Integrating nominal group technique and
joint application development for
improved systems requirements
determination”, Information &
Management, vol. 41, no. 4, pg. 399–411,
2004, DOI: 10.1016/S0378-
7206(03)00080-6

[14] D. Riehle, “A comparison of the value
systems of Adaptive Software
Development and Extreme Programming:
How methodologies may learn from each
other”, Proceedings of the First
International Conference on Extreme
Programming and Flexible Processes in
Software Engineering, XP 2000, 21-23
Jun. 2000, Cagliari, Italy, pg. 35-50
[15] J. Martin, Rapid application
development, Publisher: Macmillan
Publishing, 1991, pg. 788, ISBN:0-02-
376775-8
[16] S. Mathur, S. Malik, “Advancements
in the V-Model”, International Journal of
Computer Applications, vol. 1, no. 12, pg.
29-34, 2010, doi: 10.5120/266-425
[17] J. Stapleton, P. Constable, DSDM,
dynamic systems development method: the
method in practice, Publisher: Cambridge
University Press, 1997, pg. 192, ISBN-10:
0201178893
[18] M. Soeken, R. Wille, R. Drechsler,
“Assisted behavior driven development

using natural language processing”,
Proceedings of the 50th International
Conference on Objects, Models,
Components, Patterns, TOOLS 2012, 29-
31 May 2012, Prague, Czech Republic,
Publisher: Springer Berlin Heidelberg,
2012, doi: 10.1007/978-3-642-30561-0_19,
pg. 269-287
[19] J. A. Livermore, “Factors that Impact
Implementing an Agile Software
Development Methodology”, Proceedings
of IEEE SoutheastCon, SECON 2007, 22-
25 Mar. 2007, Richmond, USA, Publisher:
IEEE, 2007, doi:
10.1109/SECON.2007.342860, pg.82-86
[20] G. Madey V. Freeh R. Tynan, “The
open source software development
phenomenon an analysis based on social
network theory”, Proceedings of the 8th
Americas Conference on Information
Systems, AMCIS, 9-11 Aug. 2002, Dallas,
USA, 2002, pg. 1806-1813.
[21] G. Lory, D. Campbell, A. Robin, G.
Simmons, P. Rytkonen, Microsoft
Solutions Framework version 3.0
Overview, White Paper, June 2003.
[22] R. Balduino, Introduction to OpenUP
(Open Unified Process)
http://www.eclipse.org/epf/general/OpenU
P.pdf
[23] S. Woodward, “Evolutionary project
management”, Computer, vol. 32, no. 10,
pg. 49-57, 1999, doi: 10.1109/2.796109
[24] W. W. Royce, “Managing the
development of large software systems:
Concepts and techniques”, IEEE
WESCON, vol. 26, no. 8, pg. 1-9, 1970

Mihai Liviu DESPA has graduated the Faculty of Cybernetics, Statistics
and Economic Informatics from the Bucharest Academy of Economic
Studies in 2008. He has graduated a Master’s Program in Project
Management at the Faculty of Management from the Bucharest Academy
of Economic Studies in 2010. He is a PHD Student at the Economic

Informatics PHD School and he is currently Project Manager at GDM Webmedia SRL. His
main field of interest is project management for software development.

