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Considering the importance and usefulness of real time data mining, in recent years the concern 

of researchers to discover new hardware architectures that can manage and process large 

volumes of data has increased significantly. In this paper the performance of algorithms for 

temporal data mining that are implemented in the new Compute Unified Device Architecture 

(CUDA) from the latest generation of graphics processing units (GPU) will be analyzed and 

reviewed. The performance will be evaluated taking into account the type of algorithm, data 

access, the problems` size, the GPU’s processor generation, the number of threads processed. 
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Introduction 
 

Real time data mining will enable 

scientists to develop researches on a scale 

that seemed unimaginable until recently. 

Both hardware architectures and data mining 

algorithms must properly manage and 

process huge volumes of data, otherwise 

data analysis risks becoming irrelevant in 

certain fields such as that of neuroscience. A 

possible solution to overcome these 

difficulties is the development and 

implementation of new parallel processing 

algorithms and novel hardware 

architectures.  

New techniques and data mining methods 

have been developed in recent years, used to 

discover new patterns, clusters and to 

classify different types of data. In order to 

optimize a data mining algorithm one should 

aim to improve the quality of the data 

extraction process and to streamline it by 

reducing the response time.  

Parallel hardware architectures have 

proved to be viable solutions in this respect. 

Graphics processing units (GPUs) have a 

real potential in optimizing the data mining 

process, as they are multithreaded and 

multicore processing units. Unlike central 

processing units (CPU’s), the cores of a 

GPU are virtualized at a hardware level and 

its threads are hardware managed, so the 

programs’ scalability and portability 

improves substantially. A GPU has a 

computational capacity and memory 

bandwidth far beyond than those of a CPU, 

which help accelerate most of the databases 

operations and streamline the entire data 

mining process. These graphics processing 

units combine hundreds of simplified 

parallel processing cores, which can be very 

useful in the data mining process, reducing 

the necessary time for extracting knowledge 

from data analysis. This high computational 

power is currently being used successfully in 

various scientific fields: image processing, 

geometric processing and database, 

overcoming the most powerful CPUs. 

Another essential aspect is the performance 

per watt consumed, obtained from the GPU 

when compared to the CPU processors.    

Based on their high performance, low 

cost and on the increasing number of 

features offered, GPU processors are 

powerful tools capable of solving an 

increasingly wide range of applications. In 

this paper, the research is focused on the 

study of the temporal data mining process. 

This technique is becoming increasingly 

important and widely used in applications 

from different fields such as: financial data 

prediction, telecommunication control, 

neuroscience, medical data analysis, even if 

temporal data mining is a relatively new 

field.  

For example, researchers in neuroscience 

may determine how neurons are connected 

and related to each other in the human brain. 

1 
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For this purpose, besides traditional 

methods, whose main disadvantages are the 

restricted area of the brain on which you can 

get information, modern fast methods can be 

used, which offer real-time images and 

information. These lead to a series of huge 

opportunities, patients can be screened, 

diagnosed and operated by extremely rapid 

procedures, based on huge GPU processing 

performance.  

In this paper the performance of 

algorithms for temporal data mining will be 

analyzed and reviewed considering that the 

algorithms are implemented on the new 

Compute Unified Device Architecture 

(CUDA) from the latest generation of 

graphics processing units (GPU). The 

performance will be evaluated taking into 

account the type of algorithm, data access, 

the problems` size, the GPU’s processor 

generation and the number of threads 

processed.  

Research shows that GPU processors can 

provide the desired performance, but it is 

required to address specific technical issues 

for each temporal data mining problem. 

Taking into account the size of the problem 

and the type of the algorithm implemented 

on the GPU, one can determine the optimal 

algorithm, the data access model and the 

number of threads that are necessary to 

achieve the desired performance. These 

results confirm but also contrast with 

previous research about the temporal data 

mining, implemented on graphics 

processors, such as research on MapReduce 

algorithms [1]. While most papers provide 

conclusions based on optimum choice of 

configurations, this article presents some 

general characterizations that help explain 

how data mining applications can benefit 

from the parallel architecture of the latest 

graphics processors.  

 

2. Compute Unified Device Architecture  

 

For a long time, GPU processors have 

been used to accelerate graphics rendering 

on computers. Following the increasing need 

for improved three-dimensional rendering at 

a high resolution and a large number of 

frames per second, the GPU has evolved 

through specialized architecture, from one-

purpose components to multiple purposes 

complex architectures, able to do much 

more than just provide video rendering. This 

development allowed the acceleration of a 

broad class of applications. The architecture 

and characteristics of NVIDIA GPUs are 

summarized in Figure 1. 

 
Fig. 1. NVIDIA Compute Unified Device 

Architecture (CUDA) [2] 

 

CUDA is a software and hardware 

architecture that allows the NVIDIA 

graphics processor to execute programs 

written in C, C++, FORTRAN, OpenCL, 

Direct Compute and other languages. A 

CUDA program calls parallel program 

kernels. A kernel executes in parallel a set of 

parallel threads. The programmer or 

compiler organizes these threads into thread 

blocks and grids of thread blocks. The GPU 

processor instantiates a kernel program on a 

grid containing parallel thread blocks. Each 

thread from the block executes an instance 

of the kernel and has an unique ID 

associated to registers, to thread’s private 

memory from the thread block [2].  

The Compute Unified Device 

Architecture hierarchy of threads is mapped 

to the hierarchy of the graphics processing 

units hardware processor; a GPU executes 

one or more kernel grids; a streaming 

multiprocessor (SM) executes one or more 

thread blocks; the CUDA cores contained in 

the SM run the threads within blocks. SM 

can perform up to 32 groups of threads 

called warp. Regarding memory hierarchy, 

each multiprocessor contains a set of 32-bit 

registry with a zone of shared memory, 
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which is easily accessible for each core of 

the multiprocessor but hidden from other 

multi-processors. Depending on the 

generation of a GPU, the number of registry 

and the size of shared memory varies. 

Besides shared memory, a multiprocessor 

contains two read-only memory cache, one 

for texture and another one for constants. 

 

3. The Optimization of Algorithms In 

the Process Of Temporal Data 

Mining Using the Compute Unified 

Device Architecture 

 

When algorithms are developed in the 

CUDA programming model, the basic 

concern of developers is to divide the work 

required in fragments that can be processed 

by a x number of thread blocks, each 

containing n threads. For optimum 

performance, it is recommended that the 

number of thread blocks matches the 

number of processors, although the threads 

within a block will be executed by more 

cores within a multiprocessor SM. The 

repartition of tasks to be performed between 

the x thread blocks is the most important 

factor in achieving performance.  

A single thread block can be considered 

as equivalent to a PRAM model (parallel 

random-access-machine) which allows 

processors to behave arbitrarily 

asynchronous CRCW (concurrent-read, 

concurrent-write) [3].  

Thus, PRAM algorithms are most 

efficient at block level [4] and they have to 

be decomposed into separate kernels 

because of the need for global 

synchronization of data flows, 

synchronization that can be achieved only 

by successive calls of the kernel. 

The technique of data mining through 

association is an usual method used to 

discover how certain subsets of elements are 

associated with other subsets. Temporal data 

mining is a restricted version of that 

technique, in which temporal relationships 

between elements are taken into account.  

A specific problem of temporal data 

mining is the mining of frequent episodes in 

which we find sequences of frequent items 

(episodes) appearances in a timed ordered 

database.  

An episode is defined as a partially 

ordered set of events for consecutive time 

intervals, embedded in a sequence [4]. The 

frequent episode mining is defined below 

[5]:  

• },...,,{ 21 ndddD =
 

is a database of 

ordered items; 

•  id  is an element of the alphabet 

},...,,{ 21 niiiI = ;  

• an episode jA  is a sequence of k 

elements ><
kjjj iii ,...,,

21
; 

• it is defined an appearance in the 

database D  of the episode jA  if there is 

a sequence of indices >< krrr ,...,, 21  in 

ascending order so that 

kk rjrjrj dididi === ,...,,
2211

;  

• the total number of appearances of jA  in 

D  is called the count of an episode, 

)( jANumber ; 

• the purpose of frequent episodes mining 

is to find all episodes jA
 

for which 

)( jANumber /n is greater than a 

threshold α . 

In the following, the standard 

algorithm for frequent episodes mining is 

presented.  

• Input: the threshold α and the sequential 

database },...,,{ 21 ndddD = ; 

• Output: the set of frequent episodes 

mAAAA ,...,, 21= ; 

• Stages:  
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1. on generate candidate episode for each 

level 

            φφφφ←← Sk ,1  

            level }){},...,{},{{',1 21 mk iiiAk ←←  

2. the count of candidate episodes 

          doAwhile φφφφ≠'  

           is calculated )'(
jkANumber for all   

episodes
jkA'  of kA'  

3. non-frequent episodes are eliminated 

          
α≤nANumber j /)]'([  from the set 

kA'  

4. frequent episodes are stored in the set 

AS : 

kAA ASS '∪←  

5. on generate candidate episode for next 

level  

1,' +←+← kkAAA  

end while 

6. it is returned the set AS  which contains 

frequent episodes: 

return AS  

While the elimination phase and 

generating steps include only the relevant 

subsets, the counting step may increase 

exponentially in respect with the size of a 

subset jA  and the alphabet I . So, the 

potential number of episodes of length k  is 

)!(

!

kn

n

−
 for every },...,2,1{ nk ∈ . 

Run time can be reduced by the use 

of advanced algorithms and hardware, 

implemented on parallel processing 

architectures in order to increase 

computational power. Although a number of 

data mining algorithms have already been 

implemented on graphics processing units, 

very few are for temporal data mining. An 

example is presented in [6].  

In the following four algorithms 

based on CUDA programming model [6] 

will be presented. They are based on the 

MapReduce programming model (which 

will be presented below) and for each of 

them some kind of parallelism is 

implemented. In Algorithm 1, each thread is 

looking for a single episode using data 

stored in graphics memory. In Algorithm 2, 

each thread is looking for a single episode, 

but uses shared memory to create first a data 

buffer. In Algorithm 3, threads in a block are 

looking for the same episode, but different 

blocks are looking for different episodes 

using data from the graphic card memory.  

In Algorithm 4, threads in a block are 

looking for the same episode and different 

blocks are looking for different episodes 

using shared memory to create first a data 

buffer.   

MapReduce is a software framework 

developed and implemented by Google [1], 

which provides programmers the necessary 

means to process large sets of data using 

large parallel systems. It is not necessary for 

the programmers, which use the MapReduce 

framework to have advanced knowledge in 

the field of parallel systems. In achieving 

real-time data mining, the ability to process 

data sets in parallel is extremely useful.  

The MapReduce algorithm uses two 

functions: "map" and "reduce." The first 

one, the function "map" applies to a set of 

input, which consists of a key/value pair in 

order to create a set of pairs of intermediate 

key/value. The function "reduce" applies to 

all pairs of intermediate key/value 

containing the same key intermediate to 

produce a set of outputs. Each of the two 

functions "map" and "reduce" can be 

parallel executed in order to use the 

available resources in large data centers 

(Figure 2).  
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Fig 2. The parallelism in MapReduce 

algorithm. 

MapReduce was originally developed 

and optimized by Google to run on its 

private computer data centers. Currently 

there are different versions of the 

MapReduce framework for multicore 

processors, for the Cell processor and for 

graphics processing units as well. Achieving 

high performance in these frameworks is 

quite difficult.  

The four algorithms analyzed in this 

article follow the MapReduce programming 

model to efficiently benefit from the parallel 

processing advantage. The "map" function 

returns the number of appearances of an jA  

within a database D . The "reduce" is applied 

differently, considering if parallelism of 

threads or parallelism of thread blocks is 

used. 

The first two algorithms implement 

thread level parallelism to assign a thread 

for searching an episode jA  in the database 

D . Using a thread for searching an episode 

makes the “reduce” function to become the 

identical application, which returns the value 

given by the “map” function itself as an 

output.  

Algorithm 1 (without buffering). As each 

thread will scan the entire database, the first 

algorithm places the database in the texture 

memory, so each thread can use the high 

bandwidth of the GPU. Consequently, 

threads are allocated in thread blocks one by 

one until the maximum number of threads 

per block is reached. For example, if the 

maximum number of threads per block is 

256, then threads from 1 to 256 are allocated 

to the first block of threads, those from 257 

to 512 correspond to the second block of 

threads and so on until all threads have been 

used. 

 Algorithm 2 (with buffering). The 

second algorithm also uses thread level 

parallelism, but instead using the texture 

memory, this algorithm loads a block of data 

from the database into a buffer of shared 

memory, processes data from the buffer, 

then loads another block of data in the buffer 

and the process is repeated until the entire 

database has been processed. Thread 

allocation within the thread blocks is 

achieved in the same way as in Algorithm 1.  

The Compute Unified Device 

Architecture programming model 

implements also a block level parallelism. 

The two algorithms assign a block of threads 

to find an episode. Within a block, threads 

collaborate in searching so every thread is 

looking in a portion of the database.  

Algorithm 3 (without buffering). Similar 

to Algorithm 1, threads within each block 

access data through the texture memory. 

Unlike the first algorithm, threads within a 

block are starting at different positions 

within the database, while threads with the 

same ID from different blocks are starting 

from the same position.  

Algorithm 4 (with buffering). The fourth 

algorithm analyzed in this article uses block-

level parallelism with shared memory 

database buffering. The starting point for 

each thread of Algorithm 4 depends on 

buffer size and not on the size of the 

database (as in Algorithm 3). A thread will 

always access the same shared memory area 

during all searches, but data from the shared 

memory will change when buffer updates.  

 

4. Experimental results 

 

In order to analyze the performance of 

implementing the characteristics of 

MapReduce algorithms within the graphics 

processing units, the various existing 

NVIDIA CUDA properties should be taken 

into account.  

Table 1. Characteristics of graphics cards 

used. 

Graphics Card 

8800 

GTS 

512 

9800 

GX2 

GTX 

280 

GTX 

480 

GPU G92 2xG92 GT280 GF100 

Memory (MB) 512 2x512 1024 1536 

Memory 

Bandwidth 

(GBps) 

57.6 2x64 141.7 177.4 

Multiprocessors 16 16 30 48 

Cores 128 128 240 480 

Processor 

Clock (MHz) 
1625 1500 1296 1401 
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Compute 

Capability 
1.1 1.1 1.4 2 

Registers per 

Multiprocessor 
8196 8196 16384 32768 

Registers per 

thread 
10 10 16 21 

Threads per 

Block (Max) 
512 512 512 512 

Active Threads 

per 

Multiprocessor 

(Max)  

768 768 1024 1536 

Active Warps 

per 

Multiprocessor 

(Max) 

24 24 32 48 

 

For this purpose four different NVIDIA 

GeForce graphics cards have been subjected 

to a series of tests. These cards were chosen 

to represent the latest developed 

technologies nowadays. A brief description 

of the chosen graphics cards is presented in 

Table 1.  

The most relevant experimental results on 

the performance of algorithms (presented in 

the previous section), implemented on 

CUDA architecture, running on the four 

graphics cards in Table 1, are presented 

below [6], [7]. This article aims to study, 

compare and analyze these results, 

highlighting the specific characteristics of 

each selection.  

In tests the following configuration has 

been used: E4500 Intel Core2 Duo operating 

at 2.2 GHz with 4 GB (2x2GB) of 200 MHz 

DDR2 SDRAM (DDR2-800). Programming 

and access to the GPUs used the CUDA 

toolkit and SDK 2.0 with NVIDIA driver 

version 197.75. In addition, all processes 

related to graphical user interface have been 

disabled to reduce the external traffic to the 

GPU. 

The experimental results and 

interpretations on the performance of 

algorithms mentioned above, using different 

graphics cards for episodes at different 

levels with different numbers of threads per 

block are presented below.  

At the L level of an episode, an algorithm 

searches an episode of length L. In the 

considered cases, L can be 1, 2 or 3.  

The alphabet in which the searching is 

performed consists of capital English 

alphabet letters and the database contains 

393,019 letters. Different scenarios have 

been chosen: the first level contained 26 

episodes, level 2 contained 650 episodes and 

level three contained 15,600 episodes [6].  

A test consists of selecting an episode’s 

level, an algorithm, a graphics card and the 

block size. The execution period (measured 

in milliseconds) is considered the period of 

time between the moment when the kernel is 

invoked and the moment when it returns the 

answer.  

Although the GPU’s access to graphics 

has been limited by disabling all non-

essential services, each test was performed 

ten times and the average time obtained 

during the tests was calculated.  

In the following some characteristics that 

result from these tests on the three criteria 

(the chosen level, the algorithm and graphics 

card used) and their impact on the execution 

time are presented. 

 

The effect of level selection on execution 

time 

 

To assess the impact of the problem’s 

size on execution time, a series of tests have 

been done, in which the hardware and the 

algorithm remained stable and the level L 

was varied. Because the number of episodes 

that must be searched increases 

exponentially when L increases (as noted 

earlier), the scalability of an algorithm 

regarding the problem’s size is important 

(Figure 3).    
 

 
 



Database Systems Journal vol. 1, no. 1/2010         43 

 

 
 

 

 
Fig. 3. The effect of level selection on 

execution time. 

 

a) Parallel thread algorithms 

provide constant time per episode. This is 

the case of Algorithms 1 and 2. Regardless 

of the number of searches, the time required 

to complete each individual search is 

essentially the same. A search for each 

episode is completely independent of other 

searches and every search is assigned to a 

thread. The complexity of searching a single 

episode in a set of data remains constant 

regardless of the chosen level. For this 

reason, the execution time is spent entirely 

for the execution of the "map" function 

across the entire database. Since these 

algorithms require a constant time per 

search, if we consider the parallel processing 

capability, one can observe that time 

remains constant even if a large number of 

searches are executed via the graphics 

processing unit. Even if there are 30 or 700 

or thousands of searches, the process 

requires the same period.  

b)  The increasing time in parallel 

thread processing caused by buffering 

may be amortized. Algorithm 2 uses a 

buffer zone to combine the memory 

bandwidth of all threads in a memory block 

to reduce the texture load. This implies a 

long execution time because only one block 

can be resident on a multiprocessor at a time 

during the loading phase and other 

processing cannot be done. As more threads 

are added to a block, the execution time for 

Algorithm 2 decreases exponentially. This 

feature shows that Algorithm 2 is able to use 

the processing power of a large number of 

threads. As the number of threads increases, 

more results will be quickly calculated since 

all threads can access the shared memory 

block without additional resource 

consumption (until the moment when 

planning a large number of processes on the 

multiprocessor exceeds the total calculation 

time).  

c) The execution time increases 

along with the number of threads, when 

using Algorithm 4 and the 3rd level. 

Unlike Algorithm 2, Algorithms 3 and 4 lose 

performance per episode as they increase the 

number of threads per block and the 

episode’s length. Studying the experimental 

results, we can observe an increase in the 

execution time along with the number of 

threads when using Algorithm 4 and the 

level 3. Therefore, the execution time 

increases when switching from the first to 

the second level and from the second to the 

third. These two trends are due to the 

complexity of finding the episodes and due 

to the increased resources consumption 
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when loading more blocks that can be active 

simultaneously on the graphics card.  

 

4.2. The effect of algorithm selection on 

execution time 

 

 It is very important that the chosen 

algorithm matches the size of the considered 

problem. However, a programmer often 

wants to solve a problem of a certain size 

but has access only to a certain type of 

hardware. The programmer can modify only 

the algorithm and the number of threads that 

he uses within this algorithm. In this 

situation, he will want to use the fastest 

algorithm for the problem. Tests were done 

on GTX480 graphics card, because from all 

the tested cards, it has the highest 

computational capability (Figure 4).  

d) One thread per episode is not 

enough for small problems (L = 1). When 

small lower levels problems are assessed, 

there are not enough episodes to generate 

sufficient threads to use the graphic card’s 

resources. As the number of episodes is 

fixed and there is just one thread per 

episode, in the case of Algorithms 1 and 2 

one can observe the tendency to increase the 

execution time along with the number of 

threads. Therefore, for these algorithms, the 

search time slowly decreases. Algorithm 4 

on GTX480 obtains a search time of a 

milliseconds order. Therefore, it is noted that 

when using the GTX480, real-time data 

mining can be achieved and this becomes a 

certainty for servers incorporating more of 

these parallel cards and for future GPU 

architectures, when dealing with significant 

size databases.  

e) Block level depends on its size 

for medium size problems (L = 2). 
Algorithms 1 and 2 describe the number of 

blocks while the number of threads per 

block increases, because there are a fixed 

number of episodes and thus a fixed number 

of threads, so the number of blocks changes 

in the same time with the number of threads 

per block. At the second Level, the number 

of blocks will vary depending on the number 

of threads per block.  
 

 
 

 
 

 
Figure 4. The effect of algorithm selection 

on execution time 

 

f) Thread level parallelism is 

enough for large problems (L = 3). The 

graphic card used, GTX480 has 48 

microprocessors, a maximum number of 

1,536 active threads per multiprocessor and 

a total of 73,728 active threads available. 

For L = 3, there are 25,230 episodes to 

search. Parallel thread processing algorithms 

(Algorithms 1 and 2) are much faster than 

block-level algorithms (Algorithms 3 and 4) 

because the Algorithms 1 and 2 have to 

search simultaneously for more episodes 

than Algorithms 3 and 4 for a certain 

number of threads per block. Algorithms 3 

and 4 are limited to 384 episodes that can be 

searched due to the limitation of eight 

blocks per each of the 48 available multi-

processors in GTX480 and each block is 

searching for a single episode. Algorithms 1 
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and 2 may search more episodes because 

each thread within a block will look for one 

episode. Practical resources used by each 

thread and the available resources per each 

multiprocessor determine the number of 

active episodes for Algorithms 1 and 2.  

 

4.3.The effect of graphics card selection 

on   execution time 

 
The hardware configuration is one of 

the major influencing factors of the 

algorithms’ performance (Figure 5).  
 

 
 

 
Fig. 5. The effect of graphics card selection 

on execution time. 

 

g) The frequency of CUDA 

processors implemented in GPU influence 

performance for small and medium 

problems. Algorithms 1 and 2 depend 

heavily on the CUDA processing cores 

frequency for small or medium size 

problems. The frequencies of the four 

graphic cards in question are 1401 MHz (for 

GTX480), 1296 MHz (for GTX280), 1500 

MHz (for 9800GX2) and 1625 MHz (for 

8800 GTS512). For the first two levels, 

there are no important differences, but 

starting from the third level, the 480 cores of 

the GTX480 significantly exceed those 256 

of GX2 and those 128 of 8800GTX.    

h) Block-level algorithms are 

affected by memory bandwidth. 

Algorithm 3 is considerably affected by the 

memory requirements when large sets of 

data are processed. The total number of 

threads that require memory is given by the 

total number of episodes related to the total 

number of threads in a block. The algorithm 

needs to store a large number of threads per 

multiprocessor over a long period of time 

and this produces a huge memory 

consumption. GTX480 gets the highest 

performance due to the 177.4 Gbps 

bandwidth followed by GTX280 with a 

bandwidth of 141 Gbps.  

 

5. Conclusions 

 

In this article, we analyzed and compared 

temporal data mining algorithms 

implemented on the latest NVIDIA CUDA 

architectures. As expected, the best 

execution time for the analyzed algorithms 

is the one obtained on the latest architecture, 

Fermi, that was released by NVIDIA on 

March 26, 2010. As experimental results 

outlined, an implementation based on the 

MapReduce framework must dynamically 

adapt the type and parallelism level in order 

to obtain an increased performance.  

In  order to design efficient temporal data 

mining algorithms implemented on CUDA 

parallel processing architectures, one must 

take into account the eight criteria 

mentioned above:  

• parallel thread algorithms provide 

constant time per episode; 

• the increasing time in parallel thread 

processing caused by buffering may be 

amortized; 

• the execution time increases along 

with the number of threads, when using 

Algorithm 4 and the 3rd level; 

• one thread per episode is not enough 

for small problems (L = 1); 

• block level depends on its size for 

medium size problems (L = 2); 
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• thread level parallelism is enough for 

large problems (L = 3); 

• the frequency of CUDA processors 

implemented in GPU influence 

performance for small and medium 

problems; 

• block-level algorithms are affected 

by memory bandwidth. 

There are many difficulties regarding the 

practical implementation of data mining 

algorithms on a GPU architecture. A CUDA 

programmer must have thorough knowledge 

of how threads work and how thread blocks 

are mapped, must know in detail six 

different areas of memory and especially 

inter-threading communication. Software 

development for the CUDA architecture 

began to be facilitated by new development 

environments such as NEXUS, but 

programmers are still forced to write source 

code for low-level resources and kernels 

control for each processing operation that is 

implemented on the GPU, which requires a 

large amount of time.  

There are also other limitations on the 

performance of data mining algorithms 

described above. Most important of them are 

the limitations in memory size and the 

transfer time between the GPU and the 

memory. Current NVIDIA cards support 

memory sizes up to 6 GB, the size being 

extended from 4GB with the launch of the 

new Fermi architecture, but even this is far 

below from the required size when it comes 

to huge dimensions data warehouses. 

Transfer of memory blocks between the 

CPU and GPU still consume a considerable 

amount of execution time which influences 

the performance when applying temporal 

data mining algorithms.  

Although the results offer a much 

improved performance compared to 

conventional architectures based on CPUs 

and a tremendous potential for improving 

the performance of temporal data mining 

process, there are hardware issues that have 

obviously limited the implemented 

algorithms’ performance, limitations that 

can be overcome since the new Fermi 

hardware architecture has been launched. An 

important limitation that has a direct impact 

on algorithms runtime performance happens 

when dealing with dynamically accessed 

arrays (which cannot be accessed directly by 

an index at compile time). Dynamically 

accessed arrays are automatically stored in 

local memory and cannot be stored in the 

registry memory within the CUDA 

programming model. Since local memory is 

an abstraction that refers to memory in the 

scope of a single thread, it has the same 

latency time as global memory of GPU and 

is up to about 140 times slower than registry 

memory [8]. In the above presented 

algorithms, this type of arrays addressing is 

frequently needed and the fact that the 

registry memory cannot be used is a 

significant restriction.  

Also, certain functions in CUDA, such as 

"atomicAdd ()” are implemented only for 

integer values. The support for other types 

of data would facilitate communication 

between thread blocks.  

   Considering the possibilities offered 

by CUDA (depicted in the official 

documentation "Official CUDA 

Programming Guide" [2]) the limitation of 

memory can be managed in two ways. The 

first option is the memory paging technique 

used in the algorithms above, successively 

moving portions of memory and then 

processing them. Another way to manage 

memory limitation is to use the CUDA 

direct access memory option, “zero-copy ".  

Besides the fact that the bandwidth 

available for this technique is very low, the 

memory should be declared "pinned", thus 

allowing the memory pages to be maintained 

in real memory all the time. In practice, both 

the GPU and the operating system have 

limits concerning the pinned memory that is 

under 4 GB and thus makes this method less 

effective than the paging one. 

Fermi, the new generation of NVIDIA 

architecture, can overcome all the 

limitations mentioned above. Even when 

writing this article significant efforts are 
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made to develop the CUDA programming 

environment to provide the necessary 

facilities for the typical programmer. An 

unified memory hierarchy address space 

makes it possible to run genuine C++ code 

on Fermi GPUs. Dynamic arrays can also be 

accessed in registry memory. Enhancements 

made in this new architecture allow 

improved execution times for the 

algorithms.  

The small size of the memory supported 

by the GPU is a significant limitation of the 

hardware, which is indeed increased but the 

6GB is still insufficient considering that in 

practice many databases` sizes are of the 

order of terabytes or even petabytes. TESLA 

products based on the new Fermi 

architecture use 40 bits of space address and 

thus allow addressing of up to a terabyte of 

memory, but until the first benchmarks will 

be available, it remains only a theoretical 

statement. Real time temporal data mining 

becomes slowly but surely a reality. 
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