
Database Systems Journal vol. 1, no. 1/2010 37

The Optimization of Algorithms in the Process of Temporal Data Mining

Using the Compute Unified Device Architecture

Alexandru PIRJAN

The Bucharest Academy of Economic Studies, Romania

alex@pirjan.com

Considering the importance and usefulness of real time data mining, in recent years the concern

of researchers to discover new hardware architectures that can manage and process large

volumes of data has increased significantly. In this paper the performance of algorithms for

temporal data mining that are implemented in the new Compute Unified Device Architecture

(CUDA) from the latest generation of graphics processing units (GPU) will be analyzed and

reviewed. The performance will be evaluated taking into account the type of algorithm, data

access, the problems` size, the GPU’s processor generation, the number of threads processed.

Keywords: Temporal data mining, MapReduce, CUDA, GPU, Fermi, thread, kernel.

Introduction

Real time data mining will enable

scientists to develop researches on a scale

that seemed unimaginable until recently.

Both hardware architectures and data mining

algorithms must properly manage and

process huge volumes of data, otherwise

data analysis risks becoming irrelevant in

certain fields such as that of neuroscience. A

possible solution to overcome these

difficulties is the development and

implementation of new parallel processing

algorithms and novel hardware

architectures.

New techniques and data mining methods

have been developed in recent years, used to

discover new patterns, clusters and to

classify different types of data. In order to

optimize a data mining algorithm one should

aim to improve the quality of the data

extraction process and to streamline it by

reducing the response time.

Parallel hardware architectures have

proved to be viable solutions in this respect.

Graphics processing units (GPUs) have a

real potential in optimizing the data mining

process, as they are multithreaded and

multicore processing units. Unlike central

processing units (CPU’s), the cores of a

GPU are virtualized at a hardware level and

its threads are hardware managed, so the

programs’ scalability and portability

improves substantially. A GPU has a

computational capacity and memory

bandwidth far beyond than those of a CPU,

which help accelerate most of the databases

operations and streamline the entire data

mining process. These graphics processing

units combine hundreds of simplified

parallel processing cores, which can be very

useful in the data mining process, reducing

the necessary time for extracting knowledge

from data analysis. This high computational

power is currently being used successfully in

various scientific fields: image processing,

geometric processing and database,

overcoming the most powerful CPUs.

Another essential aspect is the performance

per watt consumed, obtained from the GPU

when compared to the CPU processors.

Based on their high performance, low

cost and on the increasing number of

features offered, GPU processors are

powerful tools capable of solving an

increasingly wide range of applications. In

this paper, the research is focused on the

study of the temporal data mining process.

This technique is becoming increasingly

important and widely used in applications

from different fields such as: financial data

prediction, telecommunication control,

neuroscience, medical data analysis, even if

temporal data mining is a relatively new

field.

For example, researchers in neuroscience

may determine how neurons are connected

and related to each other in the human brain.

1

38 The Optimization of Algorithms In The Process Of Temporal Data

Mining Using the Compute Unified Device Architecture

For this purpose, besides traditional

methods, whose main disadvantages are the

restricted area of the brain on which you can

get information, modern fast methods can be

used, which offer real-time images and

information. These lead to a series of huge

opportunities, patients can be screened,

diagnosed and operated by extremely rapid

procedures, based on huge GPU processing

performance.

In this paper the performance of

algorithms for temporal data mining will be

analyzed and reviewed considering that the

algorithms are implemented on the new

Compute Unified Device Architecture

(CUDA) from the latest generation of

graphics processing units (GPU). The

performance will be evaluated taking into

account the type of algorithm, data access,

the problems` size, the GPU’s processor

generation and the number of threads

processed.

Research shows that GPU processors can

provide the desired performance, but it is

required to address specific technical issues

for each temporal data mining problem.

Taking into account the size of the problem

and the type of the algorithm implemented

on the GPU, one can determine the optimal

algorithm, the data access model and the

number of threads that are necessary to

achieve the desired performance. These

results confirm but also contrast with

previous research about the temporal data

mining, implemented on graphics

processors, such as research on MapReduce

algorithms [1]. While most papers provide

conclusions based on optimum choice of

configurations, this article presents some

general characterizations that help explain

how data mining applications can benefit

from the parallel architecture of the latest

graphics processors.

2. Compute Unified Device Architecture

For a long time, GPU processors have

been used to accelerate graphics rendering

on computers. Following the increasing need

for improved three-dimensional rendering at

a high resolution and a large number of

frames per second, the GPU has evolved

through specialized architecture, from one-

purpose components to multiple purposes

complex architectures, able to do much

more than just provide video rendering. This

development allowed the acceleration of a

broad class of applications. The architecture

and characteristics of NVIDIA GPUs are

summarized in Figure 1.

Fig. 1. NVIDIA Compute Unified Device

Architecture (CUDA) [2]

CUDA is a software and hardware

architecture that allows the NVIDIA

graphics processor to execute programs

written in C, C++, FORTRAN, OpenCL,

Direct Compute and other languages. A

CUDA program calls parallel program

kernels. A kernel executes in parallel a set of

parallel threads. The programmer or

compiler organizes these threads into thread

blocks and grids of thread blocks. The GPU

processor instantiates a kernel program on a

grid containing parallel thread blocks. Each

thread from the block executes an instance

of the kernel and has an unique ID

associated to registers, to thread’s private

memory from the thread block [2].

The Compute Unified Device

Architecture hierarchy of threads is mapped

to the hierarchy of the graphics processing

units hardware processor; a GPU executes

one or more kernel grids; a streaming

multiprocessor (SM) executes one or more

thread blocks; the CUDA cores contained in

the SM run the threads within blocks. SM

can perform up to 32 groups of threads

called warp. Regarding memory hierarchy,

each multiprocessor contains a set of 32-bit

registry with a zone of shared memory,

Database Systems Journal vol. 1, no. 1/2010 39

which is easily accessible for each core of

the multiprocessor but hidden from other

multi-processors. Depending on the

generation of a GPU, the number of registry

and the size of shared memory varies.

Besides shared memory, a multiprocessor

contains two read-only memory cache, one

for texture and another one for constants.

3. The Optimization of Algorithms In

the Process Of Temporal Data

Mining Using the Compute Unified

Device Architecture

When algorithms are developed in the

CUDA programming model, the basic

concern of developers is to divide the work

required in fragments that can be processed

by a x number of thread blocks, each

containing n threads. For optimum

performance, it is recommended that the

number of thread blocks matches the

number of processors, although the threads

within a block will be executed by more

cores within a multiprocessor SM. The

repartition of tasks to be performed between

the x thread blocks is the most important

factor in achieving performance.

A single thread block can be considered

as equivalent to a PRAM model (parallel

random-access-machine) which allows

processors to behave arbitrarily

asynchronous CRCW (concurrent-read,

concurrent-write) [3].

Thus, PRAM algorithms are most

efficient at block level [4] and they have to

be decomposed into separate kernels

because of the need for global

synchronization of data flows,

synchronization that can be achieved only

by successive calls of the kernel.

The technique of data mining through

association is an usual method used to

discover how certain subsets of elements are

associated with other subsets. Temporal data

mining is a restricted version of that

technique, in which temporal relationships

between elements are taken into account.

A specific problem of temporal data

mining is the mining of frequent episodes in

which we find sequences of frequent items

(episodes) appearances in a timed ordered

database.

An episode is defined as a partially

ordered set of events for consecutive time

intervals, embedded in a sequence [4]. The

frequent episode mining is defined below

[5]:

• },...,,{ 21 ndddD =

is a database of

ordered items;

• id is an element of the alphabet

},...,,{ 21 niiiI = ;

• an episode jA is a sequence of k

elements ><
kjjj iii ,...,,

21
;

• it is defined an appearance in the

database D of the episode jA if there is

a sequence of indices >< krrr ,...,, 21 in

ascending order so that

kk rjrjrj dididi === ,...,,
2211

;

• the total number of appearances of jA in

D is called the count of an episode,

)(jANumber ;

• the purpose of frequent episodes mining

is to find all episodes jA

for which

)(jANumber /n is greater than a

threshold α .

In the following, the standard

algorithm for frequent episodes mining is

presented.

• Input: the threshold α and the sequential

database },...,,{ 21 ndddD = ;

• Output: the set of frequent episodes

mAAAA ,...,, 21= ;

• Stages:

40 The Optimization of Algorithms In The Process Of Temporal Data

Mining Using the Compute Unified Device Architecture

1. on generate candidate episode for each

level

 φφφφ←← Sk ,1

 level }){},...,{},{{',1 21 mk iiiAk ←←

2. the count of candidate episodes

 doAwhile φφφφ≠'

 is calculated)'(
jkANumber for all

episodes
jkA' of kA'

3. non-frequent episodes are eliminated

α≤nANumber j /)]'([from the set

kA'

4. frequent episodes are stored in the set

AS :

kAA ASS '∪←

5. on generate candidate episode for next

level

1,' +←+← kkAAA

end while

6. it is returned the set AS which contains

frequent episodes:

return AS

While the elimination phase and

generating steps include only the relevant

subsets, the counting step may increase

exponentially in respect with the size of a

subset jA and the alphabet I . So, the

potential number of episodes of length k is

)!(

!

kn

n

−
 for every },...,2,1{ nk ∈ .

Run time can be reduced by the use

of advanced algorithms and hardware,

implemented on parallel processing

architectures in order to increase

computational power. Although a number of

data mining algorithms have already been

implemented on graphics processing units,

very few are for temporal data mining. An

example is presented in [6].

In the following four algorithms

based on CUDA programming model [6]

will be presented. They are based on the

MapReduce programming model (which

will be presented below) and for each of

them some kind of parallelism is

implemented. In Algorithm 1, each thread is

looking for a single episode using data

stored in graphics memory. In Algorithm 2,

each thread is looking for a single episode,

but uses shared memory to create first a data

buffer. In Algorithm 3, threads in a block are

looking for the same episode, but different

blocks are looking for different episodes

using data from the graphic card memory.

In Algorithm 4, threads in a block are

looking for the same episode and different

blocks are looking for different episodes

using shared memory to create first a data

buffer.

MapReduce is a software framework

developed and implemented by Google [1],

which provides programmers the necessary

means to process large sets of data using

large parallel systems. It is not necessary for

the programmers, which use the MapReduce

framework to have advanced knowledge in

the field of parallel systems. In achieving

real-time data mining, the ability to process

data sets in parallel is extremely useful.

The MapReduce algorithm uses two

functions: "map" and "reduce." The first

one, the function "map" applies to a set of

input, which consists of a key/value pair in

order to create a set of pairs of intermediate

key/value. The function "reduce" applies to

all pairs of intermediate key/value

containing the same key intermediate to

produce a set of outputs. Each of the two

functions "map" and "reduce" can be

parallel executed in order to use the

available resources in large data centers

(Figure 2).

Database Systems Journal vol. 1, no. 1/2010 41

Fig 2. The parallelism in MapReduce

algorithm.

MapReduce was originally developed

and optimized by Google to run on its

private computer data centers. Currently

there are different versions of the

MapReduce framework for multicore

processors, for the Cell processor and for

graphics processing units as well. Achieving

high performance in these frameworks is

quite difficult.

The four algorithms analyzed in this

article follow the MapReduce programming

model to efficiently benefit from the parallel

processing advantage. The "map" function

returns the number of appearances of an jA

within a database D . The "reduce" is applied

differently, considering if parallelism of

threads or parallelism of thread blocks is

used.

The first two algorithms implement

thread level parallelism to assign a thread

for searching an episode jA in the database

D . Using a thread for searching an episode

makes the “reduce” function to become the

identical application, which returns the value

given by the “map” function itself as an

output.

Algorithm 1 (without buffering). As each

thread will scan the entire database, the first

algorithm places the database in the texture

memory, so each thread can use the high

bandwidth of the GPU. Consequently,

threads are allocated in thread blocks one by

one until the maximum number of threads

per block is reached. For example, if the

maximum number of threads per block is

256, then threads from 1 to 256 are allocated

to the first block of threads, those from 257

to 512 correspond to the second block of

threads and so on until all threads have been

used.

 Algorithm 2 (with buffering). The

second algorithm also uses thread level

parallelism, but instead using the texture

memory, this algorithm loads a block of data

from the database into a buffer of shared

memory, processes data from the buffer,

then loads another block of data in the buffer

and the process is repeated until the entire

database has been processed. Thread

allocation within the thread blocks is

achieved in the same way as in Algorithm 1.

The Compute Unified Device

Architecture programming model

implements also a block level parallelism.

The two algorithms assign a block of threads

to find an episode. Within a block, threads

collaborate in searching so every thread is

looking in a portion of the database.

Algorithm 3 (without buffering). Similar

to Algorithm 1, threads within each block

access data through the texture memory.

Unlike the first algorithm, threads within a

block are starting at different positions

within the database, while threads with the

same ID from different blocks are starting

from the same position.

Algorithm 4 (with buffering). The fourth

algorithm analyzed in this article uses block-

level parallelism with shared memory

database buffering. The starting point for

each thread of Algorithm 4 depends on

buffer size and not on the size of the

database (as in Algorithm 3). A thread will

always access the same shared memory area

during all searches, but data from the shared

memory will change when buffer updates.

4. Experimental results

In order to analyze the performance of

implementing the characteristics of

MapReduce algorithms within the graphics

processing units, the various existing

NVIDIA CUDA properties should be taken

into account.

Table 1. Characteristics of graphics cards

used.

Graphics Card

8800

GTS

512

9800

GX2

GTX

280

GTX

480

GPU G92 2xG92 GT280 GF100

Memory (MB) 512 2x512 1024 1536

Memory

Bandwidth

(GBps)

57.6 2x64 141.7 177.4

Multiprocessors 16 16 30 48

Cores 128 128 240 480

Processor

Clock (MHz)
1625 1500 1296 1401

42 The Optimization of Algorithms In The Process Of Temporal Data

Mining Using the Compute Unified Device Architecture

Compute

Capability
1.1 1.1 1.4 2

Registers per

Multiprocessor
8196 8196 16384 32768

Registers per

thread
10 10 16 21

Threads per

Block (Max)
512 512 512 512

Active Threads

per

Multiprocessor

(Max)

768 768 1024 1536

Active Warps

per

Multiprocessor

(Max)

24 24 32 48

For this purpose four different NVIDIA

GeForce graphics cards have been subjected

to a series of tests. These cards were chosen

to represent the latest developed

technologies nowadays. A brief description

of the chosen graphics cards is presented in

Table 1.

The most relevant experimental results on

the performance of algorithms (presented in

the previous section), implemented on

CUDA architecture, running on the four

graphics cards in Table 1, are presented

below [6], [7]. This article aims to study,

compare and analyze these results,

highlighting the specific characteristics of

each selection.

In tests the following configuration has

been used: E4500 Intel Core2 Duo operating

at 2.2 GHz with 4 GB (2x2GB) of 200 MHz

DDR2 SDRAM (DDR2-800). Programming

and access to the GPUs used the CUDA

toolkit and SDK 2.0 with NVIDIA driver

version 197.75. In addition, all processes

related to graphical user interface have been

disabled to reduce the external traffic to the

GPU.

The experimental results and

interpretations on the performance of

algorithms mentioned above, using different

graphics cards for episodes at different

levels with different numbers of threads per

block are presented below.

At the L level of an episode, an algorithm

searches an episode of length L. In the

considered cases, L can be 1, 2 or 3.

The alphabet in which the searching is

performed consists of capital English

alphabet letters and the database contains

393,019 letters. Different scenarios have

been chosen: the first level contained 26

episodes, level 2 contained 650 episodes and

level three contained 15,600 episodes [6].

A test consists of selecting an episode’s

level, an algorithm, a graphics card and the

block size. The execution period (measured

in milliseconds) is considered the period of

time between the moment when the kernel is

invoked and the moment when it returns the

answer.

Although the GPU’s access to graphics

has been limited by disabling all non-

essential services, each test was performed

ten times and the average time obtained

during the tests was calculated.

In the following some characteristics that

result from these tests on the three criteria

(the chosen level, the algorithm and graphics

card used) and their impact on the execution

time are presented.

The effect of level selection on execution

time

To assess the impact of the problem’s

size on execution time, a series of tests have

been done, in which the hardware and the

algorithm remained stable and the level L

was varied. Because the number of episodes

that must be searched increases

exponentially when L increases (as noted

earlier), the scalability of an algorithm

regarding the problem’s size is important

(Figure 3).

Database Systems Journal vol. 1, no. 1/2010 43

Fig. 3. The effect of level selection on

execution time.

a) Parallel thread algorithms

provide constant time per episode. This is

the case of Algorithms 1 and 2. Regardless

of the number of searches, the time required

to complete each individual search is

essentially the same. A search for each

episode is completely independent of other

searches and every search is assigned to a

thread. The complexity of searching a single

episode in a set of data remains constant

regardless of the chosen level. For this

reason, the execution time is spent entirely

for the execution of the "map" function

across the entire database. Since these

algorithms require a constant time per

search, if we consider the parallel processing

capability, one can observe that time

remains constant even if a large number of

searches are executed via the graphics

processing unit. Even if there are 30 or 700

or thousands of searches, the process

requires the same period.

b) The increasing time in parallel

thread processing caused by buffering

may be amortized. Algorithm 2 uses a

buffer zone to combine the memory

bandwidth of all threads in a memory block

to reduce the texture load. This implies a

long execution time because only one block

can be resident on a multiprocessor at a time

during the loading phase and other

processing cannot be done. As more threads

are added to a block, the execution time for

Algorithm 2 decreases exponentially. This

feature shows that Algorithm 2 is able to use

the processing power of a large number of

threads. As the number of threads increases,

more results will be quickly calculated since

all threads can access the shared memory

block without additional resource

consumption (until the moment when

planning a large number of processes on the

multiprocessor exceeds the total calculation

time).

c) The execution time increases

along with the number of threads, when

using Algorithm 4 and the 3rd level.

Unlike Algorithm 2, Algorithms 3 and 4 lose

performance per episode as they increase the

number of threads per block and the

episode’s length. Studying the experimental

results, we can observe an increase in the

execution time along with the number of

threads when using Algorithm 4 and the

level 3. Therefore, the execution time

increases when switching from the first to

the second level and from the second to the

third. These two trends are due to the

complexity of finding the episodes and due

to the increased resources consumption

44 The Optimization of Algorithms In The Process Of Temporal Data

Mining Using the Compute Unified Device Architecture

when loading more blocks that can be active

simultaneously on the graphics card.

4.2. The effect of algorithm selection on

execution time

 It is very important that the chosen

algorithm matches the size of the considered

problem. However, a programmer often

wants to solve a problem of a certain size

but has access only to a certain type of

hardware. The programmer can modify only

the algorithm and the number of threads that

he uses within this algorithm. In this

situation, he will want to use the fastest

algorithm for the problem. Tests were done

on GTX480 graphics card, because from all

the tested cards, it has the highest

computational capability (Figure 4).

d) One thread per episode is not

enough for small problems (L = 1). When

small lower levels problems are assessed,

there are not enough episodes to generate

sufficient threads to use the graphic card’s

resources. As the number of episodes is

fixed and there is just one thread per

episode, in the case of Algorithms 1 and 2

one can observe the tendency to increase the

execution time along with the number of

threads. Therefore, for these algorithms, the

search time slowly decreases. Algorithm 4

on GTX480 obtains a search time of a

milliseconds order. Therefore, it is noted that

when using the GTX480, real-time data

mining can be achieved and this becomes a

certainty for servers incorporating more of

these parallel cards and for future GPU

architectures, when dealing with significant

size databases.

e) Block level depends on its size

for medium size problems (L = 2).
Algorithms 1 and 2 describe the number of

blocks while the number of threads per

block increases, because there are a fixed

number of episodes and thus a fixed number

of threads, so the number of blocks changes

in the same time with the number of threads

per block. At the second Level, the number

of blocks will vary depending on the number

of threads per block.

Figure 4. The effect of algorithm selection

on execution time

f) Thread level parallelism is

enough for large problems (L = 3). The

graphic card used, GTX480 has 48

microprocessors, a maximum number of

1,536 active threads per multiprocessor and

a total of 73,728 active threads available.

For L = 3, there are 25,230 episodes to

search. Parallel thread processing algorithms

(Algorithms 1 and 2) are much faster than

block-level algorithms (Algorithms 3 and 4)

because the Algorithms 1 and 2 have to

search simultaneously for more episodes

than Algorithms 3 and 4 for a certain

number of threads per block. Algorithms 3

and 4 are limited to 384 episodes that can be

searched due to the limitation of eight

blocks per each of the 48 available multi-

processors in GTX480 and each block is

searching for a single episode. Algorithms 1

Database Systems Journal vol. 1, no. 1/2010 45

and 2 may search more episodes because

each thread within a block will look for one

episode. Practical resources used by each

thread and the available resources per each

multiprocessor determine the number of

active episodes for Algorithms 1 and 2.

4.3.The effect of graphics card selection

on execution time

The hardware configuration is one of

the major influencing factors of the

algorithms’ performance (Figure 5).

Fig. 5. The effect of graphics card selection

on execution time.

g) The frequency of CUDA

processors implemented in GPU influence

performance for small and medium

problems. Algorithms 1 and 2 depend

heavily on the CUDA processing cores

frequency for small or medium size

problems. The frequencies of the four

graphic cards in question are 1401 MHz (for

GTX480), 1296 MHz (for GTX280), 1500

MHz (for 9800GX2) and 1625 MHz (for

8800 GTS512). For the first two levels,

there are no important differences, but

starting from the third level, the 480 cores of

the GTX480 significantly exceed those 256

of GX2 and those 128 of 8800GTX.

h) Block-level algorithms are

affected by memory bandwidth.

Algorithm 3 is considerably affected by the

memory requirements when large sets of

data are processed. The total number of

threads that require memory is given by the

total number of episodes related to the total

number of threads in a block. The algorithm

needs to store a large number of threads per

multiprocessor over a long period of time

and this produces a huge memory

consumption. GTX480 gets the highest

performance due to the 177.4 Gbps

bandwidth followed by GTX280 with a

bandwidth of 141 Gbps.

5. Conclusions

In this article, we analyzed and compared

temporal data mining algorithms

implemented on the latest NVIDIA CUDA

architectures. As expected, the best

execution time for the analyzed algorithms

is the one obtained on the latest architecture,

Fermi, that was released by NVIDIA on

March 26, 2010. As experimental results

outlined, an implementation based on the

MapReduce framework must dynamically

adapt the type and parallelism level in order

to obtain an increased performance.

In order to design efficient temporal data

mining algorithms implemented on CUDA

parallel processing architectures, one must

take into account the eight criteria

mentioned above:

• parallel thread algorithms provide

constant time per episode;

• the increasing time in parallel thread

processing caused by buffering may be

amortized;

• the execution time increases along

with the number of threads, when using

Algorithm 4 and the 3rd level;

• one thread per episode is not enough

for small problems (L = 1);

• block level depends on its size for

medium size problems (L = 2);

46 The Optimization of Algorithms In The Process Of Temporal Data

Mining Using the Compute Unified Device Architecture

• thread level parallelism is enough for

large problems (L = 3);

• the frequency of CUDA processors

implemented in GPU influence

performance for small and medium

problems;

• block-level algorithms are affected

by memory bandwidth.

There are many difficulties regarding the

practical implementation of data mining

algorithms on a GPU architecture. A CUDA

programmer must have thorough knowledge

of how threads work and how thread blocks

are mapped, must know in detail six

different areas of memory and especially

inter-threading communication. Software

development for the CUDA architecture

began to be facilitated by new development

environments such as NEXUS, but

programmers are still forced to write source

code for low-level resources and kernels

control for each processing operation that is

implemented on the GPU, which requires a

large amount of time.

There are also other limitations on the

performance of data mining algorithms

described above. Most important of them are

the limitations in memory size and the

transfer time between the GPU and the

memory. Current NVIDIA cards support

memory sizes up to 6 GB, the size being

extended from 4GB with the launch of the

new Fermi architecture, but even this is far

below from the required size when it comes

to huge dimensions data warehouses.

Transfer of memory blocks between the

CPU and GPU still consume a considerable

amount of execution time which influences

the performance when applying temporal

data mining algorithms.

Although the results offer a much

improved performance compared to

conventional architectures based on CPUs

and a tremendous potential for improving

the performance of temporal data mining

process, there are hardware issues that have

obviously limited the implemented

algorithms’ performance, limitations that

can be overcome since the new Fermi

hardware architecture has been launched. An

important limitation that has a direct impact

on algorithms runtime performance happens

when dealing with dynamically accessed

arrays (which cannot be accessed directly by

an index at compile time). Dynamically

accessed arrays are automatically stored in

local memory and cannot be stored in the

registry memory within the CUDA

programming model. Since local memory is

an abstraction that refers to memory in the

scope of a single thread, it has the same

latency time as global memory of GPU and

is up to about 140 times slower than registry

memory [8]. In the above presented

algorithms, this type of arrays addressing is

frequently needed and the fact that the

registry memory cannot be used is a

significant restriction.

Also, certain functions in CUDA, such as

"atomicAdd ()” are implemented only for

integer values. The support for other types

of data would facilitate communication

between thread blocks.

 Considering the possibilities offered

by CUDA (depicted in the official

documentation "Official CUDA

Programming Guide" [2]) the limitation of

memory can be managed in two ways. The

first option is the memory paging technique

used in the algorithms above, successively

moving portions of memory and then

processing them. Another way to manage

memory limitation is to use the CUDA

direct access memory option, “zero-copy ".

Besides the fact that the bandwidth

available for this technique is very low, the

memory should be declared "pinned", thus

allowing the memory pages to be maintained

in real memory all the time. In practice, both

the GPU and the operating system have

limits concerning the pinned memory that is

under 4 GB and thus makes this method less

effective than the paging one.

Fermi, the new generation of NVIDIA

architecture, can overcome all the

limitations mentioned above. Even when

writing this article significant efforts are

Database Systems Journal vol. 1, no. 1/2010 47

made to develop the CUDA programming

environment to provide the necessary

facilities for the typical programmer. An

unified memory hierarchy address space

makes it possible to run genuine C++ code

on Fermi GPUs. Dynamic arrays can also be

accessed in registry memory. Enhancements

made in this new architecture allow

improved execution times for the

algorithms.

The small size of the memory supported

by the GPU is a significant limitation of the

hardware, which is indeed increased but the

6GB is still insufficient considering that in

practice many databases` sizes are of the

order of terabytes or even petabytes. TESLA

products based on the new Fermi

architecture use 40 bits of space address and

thus allow addressing of up to a terabyte of

memory, but until the first benchmarks will

be available, it remains only a theoretical

statement. Real time temporal data mining

becomes slowly but surely a reality.

References

[1] J. Dean, S. Ghemawat - MapReduce:

Simplified Data Processing on Large

Clusters, OSDI'04: Sixth Symposium

on Operating System Design and

Implementation, San Francisco, CA,

2004.

[2] NVIDIA CUDA Compute Unified

Device Architecture - Programming

Guide, Version 3.1, 2010.

[3] C. Martel, R. Subramonian, A. Park

http://portal.acm.org/author_page.cfm?i

d=81363604006&coll=GUIDE&dl=G

UIDE&trk=0&CFID=89531225&CFT

OKEN=84483493 - Asynchronous

PRAMs are (almost) as good as

synchronous PRAMs, Proceedings of

the 31st Annual Symposium on

Foundations of Computer Science,

Pages: 590-599 vol.2, 1990.

[4] N. Satish, M. Harris, M. Garland -

Designing Efficient Sorting Algorithms

for Manycore GPUs, Proc. 23rd IEEE

International Parallel and Distributed

Processing Symposium, 2009.

[5] R. Agrawal, T. Imielinski, A. N. Swami

- Mining Association Rules between

Sets of Items in Large Databases, Proc.

ACM SIGMOD International

Conference on Management of Data,

1993.

[6] J. Archuleta, Y. Cao, W. Feng, T.

Scogland - Multi-Dimensional

Characterization of Temporal Data

Mining on Graphics Processors,

Technical Report TR-09-01, Computer

Science, Virginia Tech, 2009.

[7] W. Fang, K. Lau, M. Lu, X. Xiao,

C.Lam, P. Yang Yang, B. He1, Q. Luo,

P.Sander, K. Yang - Parallel Data

Mining on Graphics Processors,

Technical Report HKUSTCS0807,

2008.

[8] P. Bakkum, K. Skadron - Accelerating

SQL Database Operations on a GPU

with CUDA, Vol. 425, Proc. of the 3rd

Workshop on General-Purpose

Computation on Graphics Processing

Units, pg. 94-103, 2010.

