Spatial Operations

Anda VELICANU
Economic Informatics Department, Academy of Economic Studies
Bucharest, ROMANIA
anda.velicanu@ie.ase.ro

This paper contains a brief description of the most important operations that can be performed on spatial data such as spatial queries, create, update, insert, delete operations, conversions, operations on the map or analysis on grid cells. Each operation has a graphical example and some of them have code examples in Oracle and PostgreSQL.

Keywords: Spatial operations, Querying operations, Spatial data.

1 Introduction

The values of the objects’ spatial attributes represent the spatial data [1].

Spatial data can be divided in point data and regional data. The point data is a point which is completely characterized by its location in a multidimensional space. It may come directly from measurements or by transforming in order to be more easily stored and retrieved [2]. The representation of spatial data in Oracle is done according to the ANSI standard.

Spatial operations are functions that form important components of a spatial data model. They allow the storage of input data, their analysis and obtaining new data as output information. There are special spatial operations that depend as implementation of the operators made available by the database management system, in which the data is stored. No matter who the producing company is, there are certain operations that are common to any spatial products and that are based on queries. There are also regular operations that can be found in other models’ data, such as create, insert, update, delete.

Intuitively, spatial operations represent different aspects from the same real world operation. Therefore, spatial operations have space-invariant properties based on which they can be describe [3].

The user views a system as an extended relational database management system. In addition to the usual attributes in relations, the user can define spatial attributes in a homogeneous way. The system supports four types of spatial entities: points, line segments, polygons, and regions. In addition to the standard SQL commands, spatial operations are augmented in order to process and query spatial data. Spatial attribute data is stored in suitable spatial data structures [4].

2 Querying operations

Query processes are generally made to select specific data in order to measure the information from data and to perform some calculations. The queries performed on spatial data can be: Local; Area; Neighborhood (the most difficult because it requires the evaluation of proximity – eg. determining the road which passes closest to a specified region).

There are two important categories of special spatial operations, which satisfy the retrieval requests and are very popular: operations that determine the spatial relations and spatial analysis operations.

Consider a and b, two spatial objects of the same type or not (points, lines, polygons, circles, etc.), that are represented the same system (x0y axis system, latitudinally – longitudinally system, a proper representation
system etc.). With these spatial operations we can:
1. Find the equality between two spatial objects \(a = b \), which means that the two spatial objects have only common points in the system they are represented.

![Fig. 1. Equality between two spatial objects](image)

2. Find the disjunction between two spatial objects \(a \cap b = \emptyset \), which means that the two spatial objects have no points in common.

![Fig. 2. Disjunction between two spatial objects](image)

3. Calculate the minimum distance between two spatial objects \(\text{Dist}(a,b) = \text{No} \), where \(\text{No} \) is calculated as the minimum distance between the polygons which minimum frame \(a \) and \(b \) objects.

![Fig. 3. The minimum distance between two objects](image)

4. Obtain the union of geometries (spatial objects) \(a \cup b = c \), where \(c \) is a spatial object that contains only once all points of \(a \) and \(b \) objects.

![Fig. 4. The union of two spatial objects](image)

5. Obtain the intersection of two or more geometries \(a \cap b = c \), where \(c \) is an intersection geometry, which all the common points of \(a \) and \(b \) geometries.

![Fig. 5. The intersection of two spatial objects](image)

6. Determine the closest spatial object \(\text{Close}(a) = b \), if \(\text{Dist}(a,b) \) is minimum, no matter where the \(b \) object is situated in the same system as \(a \) object.

![Fig. 6. Determining the closest spatial object](image)

7. Calculate one object’s area \(A(a) = \text{No} \), where \(\text{No} \) is the area of \(a \) object.
8. Calculate the perimeter of an object \(P(a) = \text{No} \), where \(\text{No} \) is the sum of all sides of the object.
9. Calculate the centroid of an object \(C(a) = p \), where \(p \) is the central point of object \(a \).
10. Calculate the closest geometric area \(\text{CloseArea}(a) = A(b) \), where \(\text{Close}(a) = b \).
11. Determine the buffer zone around an object
Buffer \((a, \text{No}) = \{b, c, d\ldots\}\), where \(b, c, d\ldots\) is the set of points in the vicinity of the \(a\) object, at a maximum distance equal to \(\text{No}\).

![Fig. 7. Determining the buffer area around an object](image)

12. Determine the way two objects relate
RELATE\((a, b) = \text{true}, if objects } a \text{ and } b \text{ have common points on the edges or inside them.}

![Fig. 8. Example relations between spatial objects](image)

Determine the inclusion of a spatial object in another spatial object \(a \subset b = \text{true}, if all } a\text{'s points are contained in object } b.

![Fig. 9. Inclusion of a spatial object in another spatial object](image)

13. Determine the touch of two objects
Touch\((a, b) = \text{true}, if } a \cap b = \emptyset \text{ and Dist}(a, b) = 0\)

![Fig. 10. The touch of two spatial objects](image)

In order to exemplify I can briefly explain the features of spatial operations implemented in Oracle and PostgreSQL. The spatial component of Oracle is called Oracle Spatial and allows the implementation of the following special operators:
- SDO_RELATE operator, which evaluates the topologic criterion (determines if two spatial objects interact);
- SDO_WITHIN_DISTANCE operator, which determines whether two spatial objects are from each other at a distance;
- SDO_INTERSECTION operator, which determines the topological intersection of two spatial elements;

An example of implementing this operator is given below, adapted from the book [5].

```sql
SELECT SDO_GEOM.SDO_INTERSECTION(eg1.geom, eg2.geom, 0.005) as intersection FROM deposits eg1, deposits eg2 WHERE eg1.ID='1' AND eg2.ID='2';
```

- SDO_AREA operator, which calculates the area of a geometric figure;
- SDO_MAX_MBR_ORDINATE operator, which determines the maximum value for coordinates (x or y);
- SDO_LENGTH operator, that calculates the perimeter of geometric figures;
- SDO_DIFFERENCE operator, which determines the geometry resulting from the difference of two spatial objects.
8 Analysis of grid cells
This type of operation applies only to raster data. Handling grid cell consists of examining one cell or a combination of cells. Basic operations are: operations on a cell, matching operations on two cells and studying the neighbors of a cell. There can be performed different functions: trigonometric, exponential, statistical.

9 Delete operations
Involves the removal of objects from the system.

Aknowledgement
This article is a result of the project „Doctoral Program and PhD Students in the education research and innovation triangle“. This project is co-funded by European Social Fund through The Sectorial Operational Program for Human Resources Development 2007-2013, coordinated by The Bucharest Academy of Economic Studies.

References